Advertisement

Efficient Multimedia Data Transmission Model for Future Generation Wireless Network

  • T. KavithaEmail author
  • K. Jayasankar
Chapter
  • 36 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 637)

Abstract

To meet the resource demands of future wireless communications due to the increased usage of smart phones, smart devices and video-streaming platforms have led the future wireless communications to deploy dense heterogeneous Cloud Radio Access Network Systems (C-RANs). The heterogeneous communication environment offers fine-grained uniform experience to its subscribers and low-cost deployment irrespective of user location in the communication environment. The C-RANs have emerged as one of the promising solution to meet the operational cost, Quality of Service (QoS), and compression of baseband data requisite. This work, considers implementation of C-RAN model where baseband unit (BBU) and Remote Radio Heads (RRH) are connected through Common Public Radio Interface (CPRI) Fronthaul links. For such networks, reducing the data rate compression is very essential as the Fronthaul links capacity is limited and costly as they transport complex baseband samples. Fronthaul compression exploits the spatial and temporal behavior of time domain LTE signals for reducing the data rates has been considered by the existing models nonetheless it remains a challenge. To overcome the research challenge in building better transmission model, this work considers jointly exploiting both spatial and temporal correlations of the transmitted baseband signals to obtain efficient Fronthaul compression performance for LTE cellular networks using Refined Huffman. This work, assumes a case similar to massive Multiple-Input Multiple-Output (MIMO) communication mobile environment, where number of receiving antennas will outnumber the active user terminals. Our model applies Low-Rank (LR) approximation of complex baseband samples to obtain spatial and temporal correlations construction matrices of signals. The correlated baseband signals are then encoded using proposed refined Huffman encoder technique (RHCT) to achieve better compression. Experiments are carried out for evaluating the performance attained by the proposed method with Standard Huffman. The results obtained displays, that the proposed model attains superior performance enhancement than the existing state-of-the-art Huffman encoder model in terms of Symbol Error Rate (SER), Bit Error Rate (BER), Compression, and Throughput (Sum rate).

Keywords

Cloud Radio Access Networks Codewords Compression Huffman Mobile Network  Variable Length Code  Wireless Network 

References

  1. 1.
    Chen, K., C-RAN, D.R.: The Road Towards Green RAN. China Mobile Research Institute Ver. 2 (2011)Google Scholar
  2. 2.
    Checko, A., Christiansen, H.L., Yan, Y., Scolari, L., Kardaras, G., Berger, M.S., Dittmann, L.: Cloud RAN for mobile networks: a technology overview. IEEE Commun. Surv. Tutor. 17(1), 405–426 (2012)CrossRefGoogle Scholar
  3. 3.
    Zhu, Z., Gupta, P., Wang, Q., Kalyanaraman, S., Lin, Y., Franke, H., Sarangi, S.: Virtual base station pool: towards a wireless network cloud for radio access networks. In: Proceedings of the 8th ACM International Conference on Computing Frontiers, New York, Mar 2011, pp. 34:1–34:10Google Scholar
  4. 4.
    Marsch, P., Fettweis, G.: Uplink CoMP under a constrained backhaul and imperfect channel knowledge. IEEE Trans. Wirel. Commun. 10(6), 1730–1742 (2011)CrossRefGoogle Scholar
  5. 5.
    ETSI GS: 001: Open Radio Equipment Interface (ORI), Requirements for Open Radio Equipment Interface (Release 3) (2014)Google Scholar
  6. 6.
    AB Ericsson, Huawei Technologies, NEC Corporation, Alcatel Lucent, Nokia Siemens Networks: Common Public Radio Interface (CPRI); Interface Specification, CPRI Specification, vol. 5 (2011)Google Scholar
  7. 7.
    CPRI Specification V6.0 (2013-08-30): Common Public Radio Interface (CPRI); Interface Specification (2013)Google Scholar
  8. 8.
    Park, S., Simeone, O., Sahin, O., Shamai Shitz, S.: Fronthaul compression for cloud radio access networks: signal processing advances inspired by network information theory. IEEE Signal Process. Mag. 31(6), 69–79 (2014)CrossRefGoogle Scholar
  9. 9.
    Guo, B., Cao, W., Tao, A., Samardzija, D.: CPRI compression transport for LTE and LTE-A signal in C-RAN. In: Proceedings of International ICST Conference on Communications and Networking in China (CHINACOM), pp. 843–849. IEEE (2012)Google Scholar
  10. 10.
    Samardzija, D., Pastalan, J., MacDonald, M., Walker, S., Valenzuela, R.: Compressed transport of baseband signals in radio access networks. IEEE Trans. Wirel. Commun. 11(9), 3216–3225 (2012)CrossRefGoogle Scholar
  11. 11.
    Vosoughi, A., Wu, M., Cavallaro, J.R.: Baseband signal compression in wireless base stations. In: Proceedings of IEEE Global Communications Conference, pp. 4505–4511 (2012)Google Scholar
  12. 12.
    Vu, T.X., Nguyen, H.D., Quek, T.Q.S., Sun, S.: Fronthaul compression and optimization for cloud radio access networks. In: 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, pp. 1–6 (2016)Google Scholar
  13. 13.
    Heo, E., Simeone, O., Park, H.: Optimal fronthaul compression for synchronization in the uplink of cloud radio access networks. EURASIP J. Wirel. Commun. Netw. 22 (2017)Google Scholar
  14. 14.
    Zhou, L., Yu, W.: Optimized backhaul compression for uplink cloud radio access network. IEEE J. Sel. Areas Commun. 32(6), 1295–1307 (2014)CrossRefGoogle Scholar
  15. 15.
    Ren, Y., Wang, Y., Xu, G., Huang, Q.: A compression method for LTE-A signals transported in radio access networks. In: Proceedings of IEEE International Conference on Telecommunications, pp. 293–297 (2014)Google Scholar
  16. 16.
    Nieman, K.F., Evans, B.L.: Time-domain compression of complex baseband LTE signals for cloud radio access networks. In: Proceedings of IEEE Global Conference on Signal and Information Processing, Dec 2013, pp. 1198–1201Google Scholar
  17. 17.
    Si, H., Ng, B.L., Rahman, M.S., Zhang, J.: A vector quantization based compression algorithm for CPRI link. In: Proceedings of IEEE Global Communications Conference, Dec 2015Google Scholar
  18. 18.
    Sanderovich, A., Somekh, O., Poor, H.V., Shamai, S.: Uplink macro diversity of limited backhaul cellular network. IEEE Trans. Inform. Theory 55(8), 3457–3478 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhou, Y., Xu, Y., Yu, W., Chen, J.: On the optimal fronthaul compression and decoding strategies for uplink cloud radio access networks. IEEE Trans. Inform. Theory (2016).  https://doi.org/10.1109/tit.2016.2617862MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kang, J., Simeone, O., Kang, J., Shitz, S.S.: Joint signal and channel state information compression for the backhaul of uplink network MIMO systems. IEEE Trans. Wirel. Commun. 13(3), 1555–1567 (2014)CrossRefGoogle Scholar
  21. 21.
    Smys, S., Josemin Bala, G.: Performance analysis of virtual clusters in personal communication networks. Clust. Comput. 15(3), 211–222 (2012)CrossRefGoogle Scholar
  22. 22.
    Coso, A.D., Simoens, S.: Distributed compression for MIMO coordinated networks with a backhaul constraint. IEEE Trans. Wirel. Commun. 8(9), 4698–4709 (2009)CrossRefGoogle Scholar
  23. 23.
    Park, S.-H., Simeone, O., Sahin, O., Shamai, S.: Robust and efficient distributed compression for cloud radio access networks. IEEE Trans. Veh. Technol. 62(2), 692–703 (2013)CrossRefGoogle Scholar
  24. 24.
    Simeone, O., Somekh, O., Erkip, E., Poor, H.V., Shamai, S.: Robust communication via decentralized processing with unreliable backhaul links. IEEE Trans. Inform. Theory 57(7), 4187–4201 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lu, L., Li, G.Y., Swindlehurst, A.L., Ashikhmin, A., Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Topics Signal Process. 8(5), 742–758 (2014)CrossRefGoogle Scholar
  26. 26.
    Pi, Z., Khan, F.: An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)CrossRefGoogle Scholar
  27. 27.
    Yasuda, Y.: Overview of digital facsimile coding techniques in Japan. Proc. IEEE 68(7) (1980)CrossRefGoogle Scholar
  28. 28.
    Arps, R.B., Truong, T.K.: Comparison of international standards for lossless still image compression. Proc. IEEE 82(6) (1994)CrossRefGoogle Scholar
  29. 29.
    Kavitha, T., Jaya Sankar, K.: An efficient compression technique for ITU-T group 3 coded images using variable length codes with reduced average length. In: 2016 IEEE International Conference on India International Conference On Information Processing (IICIP-2016), pp. 1–6 (2016)Google Scholar
  30. 30.
    Ramalho, L., Fonseca, M.N., Klautau, A., Lu, C., Berg, M., Trojer, E., Höst, S.: An LPC-based fronthaul compression scheme. IEEE Commun. Lett. 21(2), 318–321 (2017)CrossRefGoogle Scholar
  31. 31.
    Kavitha, T., Jayasankar, K.: Ideal Huffman code for lossless image compression for ubiquitous access. Indones. J. Electr. Eng. Comput. Sci. 12(2), 765–774 (2018)CrossRefGoogle Scholar
  32. 32.
    Ramalho, L., Freire, I., Lu, C., Berg, M., Klautau, A.: Improved LPC-based fronthaul compression with high rate adaptation resolution. IEEE Commun. Lett. 22(3), 458–461 (2018)CrossRefGoogle Scholar
  33. 33.
    Loyka, S.L.: Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Commun. Lett. 5(9), 369–371 (2001)CrossRefGoogle Scholar
  34. 34.
    Standard Test Images. Compiled by Mike Waken, University of Michigan. itu.int/net/itu-t/sigdc/genimage/test24.htm

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of ECEMVSRECHyderabadIndia
  2. 2.Department of ECEMGITHyderabadIndia

Personalised recommendations