Data Mining and Social Network Analysis on Twitter

  • Jesus Silva
  • Noel Varela
  • David Ovallos-Gazabon
  • Hugo Hernández Palma
  • Ana Cazallo-Antunez
  • Osman Redondo Bilbao
  • Nataly Orellano Llinás
  • Omar Bonerge Pineda Lezama
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 637)


The emergence of a networked social structure in the last decade of twentieth century is accelerated by the evolution of information technologies and, in particular, the Internet has given rise to the full emergence of what has been called the Information Age [1] or the Information Society [2]. Social media is yet another example of people’s extraordinary ability to generate, disseminate and exchange meanings in collective interpersonal communication with a massive, real-time networked system where everything tends to be connected. The analysis of the climate of opinion on Twitter is presented around the Common Core State Standards (CCSS), one of the most ambitious educational reforms of the last 50 years in USA.


Social media mining Social media Twitter Social network analysis SNA Common core state standards 


  1. 1.
    Hahsler, M., Karpienko, R.: Visualizing association rules in hierarchical groups. J. Bus. Econ. 87, 317–335 (2017)Google Scholar
  2. 2.
    Yuan, M., Ouyang, Y., Xiong, Z., Sheng, H.: Sentiment classification of web review using association rules. In: Ozok, A.A., Zaphiris P. (eds.) Online Communities and Social Computing. OCSC 2013. Lecture Notes in Computer Science, vol. 8029. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining causal structures. Data Mining Knowl. Discov. 4(2–3), 163–192 (2000)CrossRefGoogle Scholar
  4. 4.
    Amelec, V., Carmen, V.: Relationship between variables of performance social and financial of microfinance institutions. Adv. Sci. Lett. 21(6), 1931–1934 (2015)CrossRefGoogle Scholar
  5. 5.
    Java, A., Finin, T., Song, X., Tseng, B.: Why we Twitter: understanding microblogging usage and communities. In: WebKDD/SNA-KDD’07 Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis (2007)Google Scholar
  6. 6.
    Naaman, M., Boase, J., Lai, C.-H.: Is it really about me? Message content in social awareness streams. In: CSCW’10 Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work (2010)Google Scholar
  7. 7.
    Zafarani, R., Ali Abbasi, M., Liu, H.: Social Media Mining. Cambridge University Press. (2014)
  8. 8.
    Morris, M.R., Teevan, J., Panovich, K.: What do people ask their social networks, and why? A survey study of status message Q&A behavior. In: CHI’10 Proceedings of the 28th International Conference on Human Factors in Computing Systems (2010)Google Scholar
  9. 9.
    Viloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Proc. Comput. Sci. 151, 1201–1206 (2019)CrossRefGoogle Scholar
  10. 10.
    Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernandez, L., Cali, E.G.: Database performance tuning and query optimization. In: International Conference on Data Mining and Big Data, pp. 3–11. Springer, Cham (2018)CrossRefGoogle Scholar
  11. 11.
    Mayer-Schönberger, V., Cukier, K.: Big data: a revolution that will transform how we live, work, and think. Mariner Books. (2014)
  12. 12.
    Cagliero, L., Fiori, A.: Analyzing Twitter user behaviors and topic trends by exploiting dynamic rules. In: Behavior Computing: Modeling, Analysis, Mining and Decision, pp. 267–287. Springer (2012)Google Scholar
  13. 13.
    Erlandsson, F., Brodka, P., Borg, A., Johnson, H.: Finding influential users in social media using association rule learning. Entropy 18, 164 (2016)CrossRefGoogle Scholar
  14. 14.
    Meduru, M., Mahimkar, A., Subramanian, K., Padiya, P.Y., Gunjgur, P.N.: Opinion mining using twitter feeds for political analysis. Int. J. Comput. (IJC) 25(1), 116–123 (2017)Google Scholar
  15. 15.
    Abascal-Mena, R., López-Ornelas, E., Zepeda-Hernández, J.S.: User generated content: an analysis of user behavior by mining political tweets. In: Ozok, A.A., Zaphiris, P. (eds.) Online Communities and Social Computing. OCSC 2013. Lecture Notes in Computer Science, vol. 8029. Springer, Berlin, HeidelbergGoogle Scholar
  16. 16.
    Dehkharghani, R., Mercan, H., Javeed, A., Saygin, Y.: Sentimental causal rule discovery from Twitter. Expert Syst. Appl. 41(10), 4950–4958 (2014)CrossRefGoogle Scholar
  17. 17.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp. 363–370 (2005)Google Scholar
  18. 18.
    Viloria, A., et al.: Integration of data mining techniques to PostgreSQL database manager system. Proc. Comput. Sci. 155, 575–580 (2019)CrossRefGoogle Scholar
  19. 19.
    Guandong, X., Lin, L., (eds.). (2013). Social media mining and social network analysis; emerging research. Reference and Research Book News 28(3). Portland: Ringgold Inc.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Jesus Silva
    • 1
  • Noel Varela
    • 2
  • David Ovallos-Gazabon
    • 3
  • Hugo Hernández Palma
    • 4
  • Ana Cazallo-Antunez
    • 3
  • Osman Redondo Bilbao
    • 5
  • Nataly Orellano Llinás
    • 6
  • Omar Bonerge Pineda Lezama
    • 7
  1. 1.Universidad Peruana de Ciencias AplicadasLimaPeru
  2. 2.Universidad de la Costa (CUC)Atlántico, BarranquillaColombia
  3. 3.Universidad Simón BolívarBarranquillaColombia
  4. 4.Corporación Universitaria LatinoamericanaBarranquillaColombia
  5. 5.Corporación Politécnico de la Costa AtlánticoBarranquillaColombia
  6. 6.Corporación Universitaria Minuto de Dios—UNIMINUTOBarranquillaColombia
  7. 7.Universidad Tecnológica Centroamericana (UNITEC)San Pedro SulaHonduras

Personalised recommendations