Advertisement

Nitrogen Stress in Plants and the Role of Phytomicrobiome

  • Garima Malik
  • Navneet Singh
  • Sunila Hooda
Chapter
  • 36 Downloads
Part of the Environmental and Microbial Biotechnology book series (EMB)

Abstract

Nitrogen (N) being an important macronutrient for plants is a major factor that determines its growth and yield. Nitrogen uptake, nutrition, and signaling have received a lot of attention in the last few decades. More recently, the focus of the research has shifted to regulatory networks within or outside the N metabolism. We know that N is not just the essential nutrient required to support the optimal plant growth and yield, but is also an important signal involved in a wide array of plant responses to a broad range of biotic and abiotic stresses including nutrient deficiency, light, salinity, and drought. The recent progress in the genome sequencing data has allowed us to draw a more comprehensive picture of the molecular and structural diversities of the genes and the encoded proteins involved in morphological and physiological responses to N. Most plants have the ability to enhance nutrient acquisition through symbiosis—close and long-term relationship of microbes with plants. The current review focuses on the most exciting developments in the field of microbes and its role in N stress.

Keywords

Nitrogen Nitrate Diazotrophs Biological nitrogen fixation Sustainable agriculture 

References

  1. Adams DG, Duggan PS (2008) Cyanobacteria-bryophyte symbioses. J Exp Bot 59:1047–1058CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahemad M, Malik A (2011) Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J 2:12–21CrossRefGoogle Scholar
  4. Akkermans ADL, Abdulkadir S, Trinick MJ (1978) N2-fixing root nodules in Ulmaceae: Parasponia or (and) Trema spp.? Plant Soil 49:711–715CrossRefGoogle Scholar
  5. Alboresi A, Gestin C, Leydecker MT et al (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ 28:500–512CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alloisio N, Queiroux C, Fournier P et al (2010) The Frankia alni symbiotic transcriptome. Mol Plant-Microbe Interact 23(5):593–607CrossRefPubMedPubMedCentralGoogle Scholar
  7. Alvarez JM, Vidal EA, Gutierrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol 15:185–191CrossRefPubMedPubMedCentralGoogle Scholar
  8. Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18:705CrossRefGoogle Scholar
  9. Anjum MA, Sajjad MR, Akhtar N et al (2007) Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. J Agric Res 45:135–143Google Scholar
  10. Argudo M, Little R, Shearer N et al (2005) Nitrogen fixation: key genetic regulatory Mechanisms. Biochem Soc Trans 33:152–156CrossRefGoogle Scholar
  11. Bai YM, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781CrossRefGoogle Scholar
  12. Becking J (2006) The family Azotobacteraceae. Prokaryotes 6:759–783CrossRefGoogle Scholar
  13. Belay N, Sparling R, Daniels L (1984) Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature 312:286–288CrossRefPubMedPubMedCentralGoogle Scholar
  14. Beneduzi A, Peres D, Vargas LK et al (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing Bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320CrossRefGoogle Scholar
  15. Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Mol Biol Rev 57:293–319Google Scholar
  16. Bentley BL (1987) Nitrogen fixation by epiphylls in a tropical rainforest. Ann Mo Bot Gard 74:234–241CrossRefGoogle Scholar
  17. Bergman B, Johansson C, Soderback E (1992) The Nostoc-Gunnera symbiosis. New Phytol 122:379–400CrossRefGoogle Scholar
  18. Berry A, Mendoza-Herrera A, Guo YT et al (2011) New perspectives on nodule nitrogen assimilation in actinorhizal symbioses. Funct Plant Biol 38:639–644CrossRefGoogle Scholar
  19. Bhattacharyya PN, Jha DK (2012) Plant growth -promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bloom AJ (2015) The increasing importance of distinguishing among plant nitrogen sources. Curr Opin Plant Biol 25:10–16CrossRefGoogle Scholar
  21. Bonnett HT (1990) The Nostoc–Gunnera association. In: Rai AN (ed) Handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, FL, pp 161–171Google Scholar
  22. Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:201PubMedPubMedCentralGoogle Scholar
  23. Braud A, Jézéquel K, Bazot S et al (2009) Enhanced phytoextraction of an agricultural Cr-, Hg and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286CrossRefPubMedPubMedCentralGoogle Scholar
  24. Brown JR, Doolittle WF (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61:456–502CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cabello P, Roldán MD, Moreno-Vivián C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150:3527–3546CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cakmakci R, Erat M, Erdogan UG et al (2007) The influence of PGPR on growth parameters, anti-oxidant and pentose phosphate oxidative cycle enzymes in wheat and spinach plants. J Plant Nutr Soil Sci 170:280–295CrossRefGoogle Scholar
  27. Callaham DA, Torrey JG (1981) The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can J Bot 59:1647–1664CrossRefGoogle Scholar
  28. Carvalho TLG, Balsemão-Pires E, Saraiva RM et al (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65:5631–5642CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chen H, Yang LQ, Wen L et al (2016) Effects of nitrogen deposition on soil sulfur cycling. Glob Biogeochem Cycles 30:1568–1577CrossRefGoogle Scholar
  30. Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30:323–332CrossRefPubMedPubMedCentralGoogle Scholar
  31. Costa JL, Lindblad P (2002) Cyanobacteria in symbiosis with cycads. In: Rai AN et al (eds) Cyanobacteria in symbiosis. Springer, Dordrecht, The Netherlands, pp 195–205Google Scholar
  32. Costa JL, Paulsrud P, Lindblad P (1999) Cyanobiont diversity within coralloid roots of selected cycad species. FEMS Microbiol Ecol 28:85–91CrossRefGoogle Scholar
  33. Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 71(1):859–868Google Scholar
  34. Dary M, Chamber-Pérez MA, Palomares AJ et al (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dasgupta D, Ghati A, Sarkar A (2015) Application of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Sesbania bispinosa on the growth of chickpea (Cicer arietinum L.). Int J Curr Microbiol App Sci 4(5):1033–1042Google Scholar
  36. Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Nitrogen fixation: origins, applications, and research progress. Springer, Dordrecht, pp 199–234CrossRefGoogle Scholar
  37. Dean DR, Jacobsen MR (1992) Biochemical genetics of nitrogenase. In: Stacey G et al (eds) Biological Nitrogen Fixation. Chapman and Hall, New York, NY, pp 763–834Google Scholar
  38. Devi KA, Pandey G, AKS R et al (2017) The endophytic symbiont-Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Front Microbiol 8:1897CrossRefPubMedPubMedCentralGoogle Scholar
  39. Dey R, Pal KK, Bhatt DM et al (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159(4):371–394CrossRefPubMedPubMedCentralGoogle Scholar
  40. Egamberdiyeva D (2007) The growth and nutrient uptake of maize inoculated with plant growth promoting bacteria affected by different soil types. Appl Soil Ecol 36:184–189CrossRefGoogle Scholar
  41. Elmerich C (2007) Historical Perspective: From Bacterization to Endophytes. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 1–20CrossRefGoogle Scholar
  42. Erisman JW, Sutton M, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci-NAT GEOSCI 1:636–639CrossRefGoogle Scholar
  43. Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Inc., SunderlandGoogle Scholar
  44. Faisal M, Hasnain S (2005) Bacterial Cr (VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol Lett 27:943–947CrossRefGoogle Scholar
  45. Fallon TR, Weng JK (2014) A molecular gauge for nitrogen economy in plants. Cell 159(5):977–978CrossRefGoogle Scholar
  46. Fan X, Feng H, Tan Y et al (2016a) A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol 58:590–599CrossRefGoogle Scholar
  47. Fan X, Naz M, Fan X et al (2017) Plant nitrate transporters: from gene function to application. J Exp Bot 68(10):2463–2475CrossRefGoogle Scholar
  48. Fan X, Tang Z, Tan Y et al (2016b) Over expression of a pH sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci U S A 113:7118–7123CrossRefPubMedPubMedCentralGoogle Scholar
  49. Felici C, Vettori L, Giraldi E et al (2008) Single and coinoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: Effects on plant growth and rhizosphere microbial community. Appl Soil Ecol 10:260–270CrossRefGoogle Scholar
  50. Feng H, Yan M, Fan X et al (2011) Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62:2319–2332CrossRefGoogle Scholar
  51. Franche C, Bogusz D (2011) Signalling and communication in actinorhizal symbiosis. In: Perotto S, Baluska F (eds) Signalling and communication in plant symbiosis. Springer, Berlin, pp 73–92Google Scholar
  52. Fürnkranz M, Wanek W, al RA e (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300CrossRefPubMedPubMedCentralGoogle Scholar
  54. Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71.  https://doi.org/10.1579/0044-7447-31.2.64CrossRefPubMedPubMedCentralGoogle Scholar
  55. Gent L, Forde BG (2017) How do plants sense their nitrogen status? J Exp Bot 68(10):2531–2539CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci 1:35–40Google Scholar
  57. Glass ADM, Kotur Z (2013) A reevaluation of the role of Arabidopsis NRT1.1 in high-affinity nitrate transport. Plant Physiol 163:1103–1106CrossRefPubMedPubMedCentralGoogle Scholar
  58. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, ScientificaCrossRefGoogle Scholar
  59. Gojon A, Krouk G, Perrine-Walker F et al (2011) Nitrate transceptor(s) in plants. J Exp Bot 62:2299–2308CrossRefPubMedPubMedCentralGoogle Scholar
  60. Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605CrossRefGoogle Scholar
  61. Gu R, Duan F, An X et al (2013) Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Plant Cell Physiol 54:1515–1524CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hageman RV, Burris RH (1978) Dinitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proc Natl Acad Sci USA 75:2699–2702CrossRefPubMedPubMedCentralGoogle Scholar
  63. Halbleib CM, Ludden PW (2000) Regulation of biological nitrogen fixation. J Nutr 130:1081–1084CrossRefPubMedPubMedCentralGoogle Scholar
  64. Hamdi YA (1982) Application of nitrogen-fixing systems in soil improvement and management. FAO Soils Bull. 49. Food and Agriculture Organization, RomeGoogle Scholar
  65. Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320CrossRefPubMedPubMedCentralGoogle Scholar
  66. Hibbs DE, Cromack K (1990) Actinorhizal plants in Pacific Northwest forests. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and Actinorhizal plants. Academic Press, San Diego, pp 343–363CrossRefGoogle Scholar
  67. Hirel B, Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387CrossRefGoogle Scholar
  68. Ho CH, Lin SH, Hu HC et al (2009) CHL1 functions as a nitrate sensor in plants. Cell 138:1184–1194CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162(1):9–24CrossRefGoogle Scholar
  70. Hwang CF, Lin Y, D’Souza T, Cheng CL (1997) Sequences necessary for nitrate-dependent transcription of Arabidopsis nitrate reductase genes. Plant Physiol 113:853–862CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jackson RB, Caldwell MM (1993) The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology 74:612–614CrossRefGoogle Scholar
  72. Jahanian A, Chaichi MR, Rezaei K et al (2012) The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynara scolymus). Int J Agric Crop Sci 4:923–929Google Scholar
  73. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209CrossRefGoogle Scholar
  74. Kennedy C (2005) Genus I Beijerinckia. In: Brenner DJ et al (eds) Bergey’s manual of systematic bacteriology, vol 2., part C, 2nd edn. Springer, New York, NY, pp 423–432CrossRefGoogle Scholar
  75. Kersters K, De Vos P, Gillis M et al (2006) Introduction to the proteobacteria. The Prokaryotes 5:3–37. Springer, New YorkCrossRefGoogle Scholar
  76. Kim J, Rees DC (1992) Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 257:1677–1682CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kisiel A, Kępczyńska E (2016) Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. Planta 243:1169–1189CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kohler J, Caravaca F, Roldan A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42(3):429–434CrossRefGoogle Scholar
  79. Kou HP, Li Y, Song XX et al (2011) Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J Plant Physiol 168:1685–1693CrossRefPubMedPubMedCentralGoogle Scholar
  80. Krapp A, David LC, Chardin C et al (2014) Nitrate transport and signalling in Arabidopsis. J Exp Bot 65:789–798CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kraiser T, Gras D, Gutierrez A, Gonzalez B, Gutierrez R (2011) Holistic view of nitrogen acquisition in plants. J Exp Bot 62:1455–1466CrossRefPubMedPubMedCentralGoogle Scholar
  82. Krouk G, Crawford NM, Coruzzi GM et al (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lalande R, Bissonnette N, Coutlée D et al (1989) Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 115:7–11CrossRefGoogle Scholar
  84. Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. Curr Issues Mol Biol 2(4):125–131Google Scholar
  85. Léran S, Varala K, Boyer JC et al (2014) A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends Plant Sci 19:5–9CrossRefPubMedPubMedCentralGoogle Scholar
  86. Lezhneva L, Kiba T, Feria-Bourrellier AB et al (2014) The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant J 80:230–241CrossRefPubMedPubMedCentralGoogle Scholar
  87. Lillo C, Appenroth KJ (2001) Light regulation of nitrate reductase in higher plants: Which photoreceptors are involved? Plant Biol 3:455–465CrossRefGoogle Scholar
  88. Lin SH, Kuo HF, Canivenc G et al (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20:2514–2528CrossRefPubMedPubMedCentralGoogle Scholar
  89. Liu TY, Chang CY, Chiou TJ (2009) The long-distance signaling of mineral macronutrients. Curr Opin Plant Biol 12:312–319CrossRefPubMedPubMedCentralGoogle Scholar
  90. Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287CrossRefPubMedPubMedCentralGoogle Scholar
  91. Loque D, Yuan L, Kojima S et al (2006) Additive contribution of AMT1; 1 and AMT1; 3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 48:522–534CrossRefPubMedPubMedCentralGoogle Scholar
  92. Ma Y, Rajkumar M, Freitas H (2009a) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75(6):719–725CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ma Y, Rajkumar M, Freitas H (2009b) Improvement of plant growth and nickel uptake by nickel resistant -plant-growth promoting bacteria. J Hazard Mater 166:1154–1161CrossRefPubMedPubMedCentralGoogle Scholar
  94. Ma Y, Rajkumar M, Luo Y et al (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mancinelli RL (1996) The nature of nitrogen: an overview. Life Support Biosph Sci 3:17–24PubMedPubMedCentralGoogle Scholar
  96. Marín IC, Loef I, BartetzkoIain L et al (2011) Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Plants 233(3):539–552CrossRefGoogle Scholar
  97. Martínez-Hidalgo P, Hirsch AM (2017) The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes J 1(2):70–82CrossRefGoogle Scholar
  98. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, Boston, MAGoogle Scholar
  99. Marschner P (2011) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, LondonGoogle Scholar
  100. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663CrossRefPubMedPubMedCentralGoogle Scholar
  101. Miller AJ, Fan X, Orsel M et al (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306CrossRefPubMedPubMedCentralGoogle Scholar
  102. Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193(2):77–81CrossRefPubMedPubMedCentralGoogle Scholar
  103. Morere-Le Paven MC, Viau L, Hamon A et al (2011) Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula. J Exp Bot 62:5595–5605CrossRefPubMedPubMedCentralGoogle Scholar
  104. Murray PA, Zinder SH (1984) Nitrogen fixation by a methanogenic archaebacterium. Nature 312:284–286CrossRefGoogle Scholar
  105. Mus F, Crook MB, Garcia K, Garcia et al (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710CrossRefPubMedPubMedCentralGoogle Scholar
  106. Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1–29CrossRefGoogle Scholar
  107. Nehra V, Choudhary M (2015) A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl Nat Sci 7(1):540–556CrossRefGoogle Scholar
  108. Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996CrossRefGoogle Scholar
  109. O’Brien JA, Vega A, al BE e (2016) Nitrate transport, sensing, and responses in plants. Mol Plant 9:837–856CrossRefPubMedPubMedCentralGoogle Scholar
  110. Offre P, Spang A, Schleper C (2013) Archaea in Biogeochemical Cycles. Annu Rev Microbiol 67:437–457CrossRefGoogle Scholar
  111. Ogburn S (2010) The dark side of nitrogen. Grist. Retrieved from http://grist.org/article/2009-11-11-the-dark-side-of-nitrogen/
  112. Oliveira ALM, Urquiaga S, Döbereiner J (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215CrossRefGoogle Scholar
  113. Pathak RR, Ahmad A, Lochab S et al (2008) Molecular physiology of plant N-use efficiency and biotechnological options for its enhancement. Curr Sci 94(11):1394–1403Google Scholar
  114. Pathak RR, Lochab S, Raghuram N (2011) Improving plant nitrogen-use efficiency. In: M-Y M (ed) Comprehensive biotechnology, vol 4, 2nd edn. Elsevier, pp 209–218Google Scholar
  115. Paul S, Datta SK, Datta K (2015) miRNA regulation of nutrient homeostasis in plants. Frontiers in. Plant Sci 6:232Google Scholar
  116. Pawlowski K (2009) Induction of actinorhizal nodules by Frankia. In: Pawlowski K (ed) Prokaryotic symbionts in plants. Springer, Berlin, pp 127–154CrossRefGoogle Scholar
  117. Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125:25–35CrossRefPubMedPubMedCentralGoogle Scholar
  118. Peters JW, Boyd ES, Hamilton TL et al (2011) Biochemistry of Mo-nitrogenase. In: Moir JWB (ed) Nitrogen cycling in bacteria: molecular analysis. Caister Academic Press, Norfolk, pp 59–100Google Scholar
  119. Price MB, Jelesko J, Okumoto S (2012) Glutamate receptor homologs in Plants: Functions and evolutionary origins. Front Plant Sci 3:235CrossRefPubMedPubMedCentralGoogle Scholar
  120. Raghuram N, Chandok MR, Sopory SK (1999) Light regulation of nitrate reductase gene expression in maize involves a G-protein. Mol Cell Biol Res Commun 2:86–90CrossRefPubMedPubMedCentralGoogle Scholar
  121. Raghuram N, Sopory SK (1995a) Evidence for some common signal transduction events for opposite regulation of nitrate reductase and phytochrome I gene expression in maize. Plant Mol Biol 29:25–35CrossRefPubMedPubMedCentralGoogle Scholar
  122. Raghuram N, Sopory SK (1995b) Light regulation of NR gene expression: Mechanism and signal-response coupling. Physiol Mol Biol Plants 1:103–114Google Scholar
  123. Raghuram N, Pathak RR, Sharma P (2006) Signalling and the molecular aspects of N-use eYciency in higher plants. In: Singh RP, Jaiwal PK (eds) Biotechnological approaches to improve nitrogen use eYciency in plants. Studium Press LLC, Houston, pp 19–40Google Scholar
  124. Rahayu YS, Walch-Liu P, Neumann G et al (2005) Root-derived cytokinins as long-distance signals for NO3−-induced stimulation of leaf growth. J Exp Bot 56(414):1143–1152CrossRefPubMedPubMedCentralGoogle Scholar
  125. Rajendran G, Sing F, Desai AJ et al (2008) Enhanced growth and nodulation of Pigeon Pea by co-inoculation of Bacillus strains with Rhizobium spp. Biosour Technol 99(11):4544CrossRefGoogle Scholar
  126. Rajkumar M, Nagendran R, Kui JL et al (2006) Influence of plant growth promoting bacteria and Cr (VI) on the growth of Indian mustard. Chemosphere 62:741–748CrossRefPubMedPubMedCentralGoogle Scholar
  127. Raymond J, Siefert JL, Staples CR et al (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554CrossRefPubMedPubMedCentralGoogle Scholar
  128. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144CrossRefPubMedPubMedCentralGoogle Scholar
  129. Rekha PD, Lai W, Arun AB et al (2007) Effect of free and encapsulated Pseudomonas putida CC-R2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour Technol 98:447–451CrossRefPubMedPubMedCentralGoogle Scholar
  130. Remans T (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci U S A 103:19206–19211CrossRefPubMedPubMedCentralGoogle Scholar
  131. Richardson AE, Barea JM, McNeill AM et al (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339CrossRefGoogle Scholar
  132. Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111CrossRefPubMedPubMedCentralGoogle Scholar
  133. Ruinen J (1975) Nitrogen-fixation in the phyllosphere. In: Stewart WDP (ed) Nitrogen-fixation by free-living microorganisms. Cambridge University Press, pp 85–100Google Scholar
  134. Sachdev DP, Chaudhari HG, Kasture VM et al (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Biol 47(12):993–1000PubMedPubMedCentralGoogle Scholar
  135. Sakakibara H, Suzuki M, Takei K et al (1998) A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant J 14:337–344CrossRefPubMedPubMedCentralGoogle Scholar
  136. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767CrossRefPubMedPubMedCentralGoogle Scholar
  137. Sanhueza E (1982) The role of atmoshere in nitrogen cycling. Plant Soil 67:61–71CrossRefGoogle Scholar
  138. Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69CrossRefPubMedPubMedCentralGoogle Scholar
  139. Sheng X-F, Xia J-J (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64(6):1036–1042CrossRefPubMedPubMedCentralGoogle Scholar
  140. Shin R, Joseph MJ, Basra A et al (2011) 14-3-3 Proteins fine-tune plant nutrient metabolism. FEBS Letters 585(1): 143–147CrossRefPubMedPubMedCentralGoogle Scholar
  141. Silvester WB, McNamara PJ (1976) The infection process and ultrastructure of the Gunnera-Nostoc symbiosis. New Phytol 77:135–141CrossRefGoogle Scholar
  142. Simpson FB, Burris RH (1984) A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224:1095–1097CrossRefPubMedPubMedCentralGoogle Scholar
  143. Soni R, Carmichael JP, Shah ZH et al (1995) A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7:85–103PubMedPubMedCentralGoogle Scholar
  144. Sonoda Y, Ikeda A, Saiki S et al (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1–1;3). Plant Cell Physiol 44:726–734CrossRefPubMedPubMedCentralGoogle Scholar
  145. Sonoda Y, Ikeda A, Yamaya T (2004) Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol 45:S98–S98Google Scholar
  146. Sprent JI, Ardley JK, James EK (2013) From north to south: A latitudinal look at legume nodulation processes. S Afr J Bot 89:31–41CrossRefGoogle Scholar
  147. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506CrossRefPubMedPubMedCentralGoogle Scholar
  148. Suenaga A, Moriya K, Sonoda Y et al (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206–211CrossRefPubMedPubMedCentralGoogle Scholar
  149. Sueyoshi K, Mitsuyama T, Sugimoto T et al (1999) Effects of inhibitors of signalling components on the expression of genes for nitrate reductase and nitrite reductase in excised barley leaves. Soil Sci Plant Nutr 45:1015–1019CrossRefGoogle Scholar
  150. Thajuddin N, Muralitharan G, Sundaramoorthy M et al (2010) Morphological and genetic diversity of symbiotic cyanobacteria from cycads. J Basic Microbiol 50:254–265CrossRefPubMedPubMedCentralGoogle Scholar
  151. Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro R, Khan M (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86:978–985Google Scholar
  152. Towata EM (1985) Mucilage glands and cyanobacterial colonization in Gunnera kaalensis (Haloragaceae). Bot Gaz 146:56–62CrossRefGoogle Scholar
  153. Triplett E (1996) Diazotrophic endophytes: Progress and prospects for nitrogen fixation in monocots. Plant Soil 186:29–38CrossRefGoogle Scholar
  154. Tschoep H Gibon Y, Carilllo P et al (2009) Adjustment of growth and central metabolism to a mild but sustained nitrogen limitation in Arabidopsis. Plant Cell and Environment 32(3):300–318CrossRefGoogle Scholar
  155. Uchida R (2000) Essential nutrients for plant growth: nutrient functions and deficiency symptoms. In: Silva JA, Uchida R (eds) Plant nutrient management in hawaii’s soils: approaches for tropical and subtropical agriculture. College of Tropical Agriculture and Human Resources, University of Hawaii, Manoa, pp 31–35Google Scholar
  156. van Spronsen PC, Bakhuizen R, van Brussel AAN et al (1994) Cell-wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a 2-step process. Eur J Cell Biol 64:88–94PubMedPubMedCentralGoogle Scholar
  157. Vidal EA, Araus V, Lu C et al (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:4477–4482CrossRefPubMedPubMedCentralGoogle Scholar
  158. von Wittgenstein NJ, Le CH, Hawkins BJ et al (2014) Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evol Biol 14:11CrossRefGoogle Scholar
  159. Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182CrossRefPubMedPubMedCentralGoogle Scholar
  160. Warning HO, Hachtel W (2000) Functional analysis of a nitrite reductase promoter from birch in transgenic tobacco. Plant Sci 155:141–151CrossRefPubMedPubMedCentralGoogle Scholar
  161. Wheeler CT, Miller IM (1990) Current potential uses of actinorhizal plants in Europe. In: Schwintzer RC, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, San Diego, CA, pp 365–389CrossRefGoogle Scholar
  162. Widiez T, El-Kafafiel S, Girin T et al (2011) High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO3- uptake is associated with changes in histone methylation. Proc Natl Acad Sci U S A 108:13329–13334CrossRefPubMedPubMedCentralGoogle Scholar
  163. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proc Natl Acad Sci U S A 87:4576–4579CrossRefPubMedPubMedCentralGoogle Scholar
  164. Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182CrossRefPubMedPubMedCentralGoogle Scholar
  165. Yuan L, Loqué D, Kojima S et al (2007) The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell 19:2636–2652CrossRefPubMedPubMedCentralGoogle Scholar
  166. Yue H, Mo W, Li C et al (2007) The salt stress relief and growth promotion effect of RS-5 on cotton. Plant Soil 297:139–145CrossRefGoogle Scholar
  167. Zahir ZA, Ghani U, Naveed M et al (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424CrossRefPubMedPubMedCentralGoogle Scholar
  168. Zhan J, Sun Q (2012) Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiol Res 167:157–165CrossRefPubMedPubMedCentralGoogle Scholar
  169. Zheng Z (2009) Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav 4:584–591CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Garima Malik
    • 1
  • Navneet Singh
    • 2
  • Sunila Hooda
    • 3
  1. 1.R.G. (PG) College, C.C.S UniversityMeerutIndia
  2. 2.John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia
  3. 3.Ram Lal Anand College, University of DelhiNew DelhiIndia

Personalised recommendations