Microbial Biotechnology: A Key to Sustainable Agriculture

  • S. K. Gosal
  • Jaspreet Kaur
  • Jupinder Kaur
Part of the Environmental and Microbial Biotechnology book series (EMB)


The exploitive and improper agricultural practices lead to degradative processes such as nutrient depletion, loss in soil fertility, and soil organic matter. These processes contribute to a serious decline in soil productivity. The degraded soils can be restored and rehabilitated by alternative agricultural practices such as use of potential microbial inoculants to provide favorable environment for optimum crop production and protection. The use of bioinoculant is one of the important components of integrated nutrient management as they facilitate a cost-effective renewable source of plant nutrients which supplement chemical fertilizers contributing to sustainable agriculture. Several microorganisms are currently being marketed commercially as biofertilizers for crop plants. Unfortunately, these microorganisms are not always as efficient in the field as they are in laboratory or greenhouse experiments. The use of microbial biotechnology has manipulated the microorganism at their genetic level which leads to increase in their survival and efficiency in soil. The genetically modified microorganisms can be used as potent bioinoculants in agriculture, but their undesirable effects and ethical implications still remain a major problem whether they should be accepted or not. The presence of antibiotic resistance gene, horizontal transfer of genes, and unstable vector in modified microorganism made them unsuitable for environmental application as these characteristics can get transferred to indigenous microorganisms which lead to mutations. More intense research is required to assess the stability of genetically modified microorganism and their effect on indigenous microflora. These studies can open the way to the production of more effective, stable, and reliable recombinant inoculants for maintaining sustainable agriculture.


Bioinoculants Green revolution Microbial communities Bioinoculants 


  1. Abou-Shanab RA, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H, Ghozlan HA (2003) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytorem 5:367–379CrossRefGoogle Scholar
  2. Aguilar-Barajas PE, Cervantes C, Rensing C (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli Esther. FEMS Microbiol Lett 285:97–100CrossRefGoogle Scholar
  3. Akada R, Shimizu Y, Matsushita Y, Kawahata M, Hoshida H, Nishizawa Y (2002) Use of a YAP1 overexpression cassette conferring specific resistance to cerulenin and cycloheximide as an efficient selectable marker in the yeast Saccharomyces cerevisiae. Yeast 19:17–28CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andrews M, Hodge S, Raven JA (2010) Positive plant microbial interactions. Annals Appl Biol 157:317–320CrossRefGoogle Scholar
  5. Ayub ND, Tribelli PM, López NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13:59–66CrossRefPubMedPubMedCentralGoogle Scholar
  6. Babalola OO, Sanni AI, Odhiambo GD, Torto B (2007) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World J Microbiol Biotechnol 23(6):747–752CrossRefGoogle Scholar
  7. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water soluble, volatile, organic pollutants. Nat Biotechnol 22(5):583–588CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barea JM, Azcón R, Azcón-Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer-Verlag, Heidelberg, pp 351–371Google Scholar
  9. Baudoin E, Lerner A, Mirza MS, Zemrany HE, Combaret CP, Jurkevich E, Spaepen S, Vanderleyden J, Nazaret S, Okon Y, Loccoz YM (2010) Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Res Microbiol 161:219–226CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet- Marel JC (2000) Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol 46:229–236CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bianco C, Defez R (2010) Improvement of phosphate solubilization and medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76(14):4626–4632CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boldt TS, Sørensen J, Karlson U, Molin S, Ramos C (2004) Combined use of different Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa. FEMS Microbiol Ecol 48(2):139–148CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bruto M, Combaret CP, Muller D, Loccoz YM (2009) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Scientific Rep 4:6261CrossRefGoogle Scholar
  14. Carmen B, Roberto D (2012) Soil bacteria support and protect plants against abiotic stresses. Abiotic Stress Plants—Mech Adapt 7:144–170Google Scholar
  15. Chen H, Gao K, Kondorosi E, Kondorosi A, Rolfe BG (2005) Functional genomic analysis of global regulator NolR in Sinorhizobium meliloti. Am Phytopathol Soc 18(12):1340–1352Google Scholar
  16. Dale J W, Park SF (2007) Molecular genetics of bacteria. University of Surrey, pp. 137–244Google Scholar
  17. Dash HR, Das S (2012) Bioremediation of mercury and importance of bacterial mer genes. Int Biodeterior Biodegra 75:207–213CrossRefGoogle Scholar
  18. Davoud F, Naser A, Nemat SB, Bagher Y (2010) Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Curr Microbiol 61:37–43CrossRefGoogle Scholar
  19. Dzantor EK (2007) Phytoremediation: the state of rhizosphere ‘engineering’ for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82:228–232CrossRefGoogle Scholar
  20. EPA (1998) Final rule: Sinorhizobium meliloti strain RMBPC-2: significant new use rule. Fed Regist 63:29646–29648Google Scholar
  21. Filonov AE, Akhmetov LI, Puntus IF, ESikova TZ, Gafarov AB, Izmalkova TY, Sokolov SL, Kosheleva IA, Boronin AM (2005) The construction and monitoring of genetically tagged, plasmid-containing, naphthalene- degrading strains in soil. Microbiol 74(4):526–532CrossRefGoogle Scholar
  22. Germaine KJ, McGuinness M, Dowling DN (2013) Engineering of microbes for plant and soil systems. In: Gupta VK, Schmoll M, Mazutti MA, Maki M, Tuohy MG (eds) Applications of microbial engineering. CRC Press, Boca Raton, p 494Google Scholar
  23. Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annual Rev Ecol Evol System 40:613–635CrossRefGoogle Scholar
  24. Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568CrossRefGoogle Scholar
  25. Jin R, Yang H, Zhang A, Wang J, Liu G (2009) Bioaugmentation on decolorization of C.I. Direct Blue 71 using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). J Hazard Mater 163(2–3):1123–1128CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jones DA, Kerr A (1989) Agrobacterium radiobacter strain K1026, a genetically engineered derivative strain of strain K84, for biological control of crown gall. Pl Dis 73:15–18CrossRefGoogle Scholar
  27. Jones DA, Ryder MH, Clare BG, Farrand SK, Kerr A (1988) Construction of a Tra- deletion mutant of pAgK84 to safeguard the biological control of crown gall. Mol Gen Genet 212:207–214CrossRefGoogle Scholar
  28. Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kumamaru T, Suenaga H, Mitsuoka H, Watannabe T, Furukawa H (1998) Enhanced degradation of polychlorinated biphenyls by direct evolution of biphenyl dioxygenase. Nat Biotechnol 16:663–666CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lehrbach PR, Zeyer J, Reineke W, Knackmuss HJ, Timmis KN (1984) Enzyme recruitment in vitro: use of cloned gene to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13. J Bacteriol 158:1025–1032CrossRefPubMedPubMedCentralGoogle Scholar
  31. Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner, phytohormone manipulations do not result in common growth responses. PLoS One 3(7):e2702. Scholar
  32. Matsui T, Saeki H, Shinzato N, Matsuda H (2006) Characterization of Rhodococcus– E. coli shuttle vector pNC9501 constructed from the cryptic plasmid of a propene-degrading bacterium. Curr Microbiol 52(6):445–448CrossRefGoogle Scholar
  33. Menn FM, Easter JP, Sayler GS (2009) Genetically engineered microorganism and bioremediation. In: Rehn HJ, Reed B (eds) Biotechnology set. Wiley, Hoboken, NJ, pp 441–463Google Scholar
  34. Noble AD, Ruaysoongnern S (2010) The nature of sustainable agriculture. In: Dixon R, Tilston E (eds) Soil microbiology and sustainable crop production. Springer Science and Business Media B.V, Berlin, Heidelberg, pp 1–25Google Scholar
  35. Ohno M, Kataoka S, Yamamoto-Tamura K, Akutsu TK, Hasebe A (2011) Biological control of Rhizoctonia damping-off of cucumber by a transformed Pseudomonas putida strain expressing a chitinase from a marine bacterium. JARC 45:91–98Google Scholar
  36. Orikasa Y, Nodasaka Y, Ohyama T, Okuyama H, Ichise N, Yumoto I, Morita N, Wei M, Ohwada T (2010) Enhancement of the nitrogen fixation efficiency of genetically- engineered Rhizobium with high catalase activity. J Biosci Bioeng 110:397–402CrossRefGoogle Scholar
  37. Ouyang SP, Sun SY, Liu Q, Chen J, Chen GQ (2007) Microbial transformation of benzene to cis-3,5-cyclohexadien-1,2-diols by recombinant bacteria harboring toluene dioxygenase gene tod. Appl Microbiol Biotechnol 74(1):43–49CrossRefGoogle Scholar
  38. Panetta JD (1993) Engineered Microbes, the Cellcap system. In: Kim L (ed) Advanced engineered pesticides. Marcel Dekker, New YorkGoogle Scholar
  39. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799CrossRefPubMedPubMedCentralGoogle Scholar
  40. Potters G, Pasternak TP, Guisez Y, Jansen MAK (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Pl Cell Environ 32:158–169CrossRefGoogle Scholar
  41. Richardson AE, Hadobas PA, Hayes JE, O_Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Pl Soil 229:47–56CrossRefGoogle Scholar
  42. Rodrigues JLM, Kachel A, Aiello MR, Quensen JF, Maltseva OV, Tsio TV, Tiedje (2006) Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400 (ohb) and Rhodococcus sp. strain RHA1 (fcb). Appl Environ Microbiol 72(4):2476–2482CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rodriguez H, Gonzalez T, Selman G (2000) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84:155–161CrossRefGoogle Scholar
  44. Sashidhar B, Rao PA (2009) Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings. Microbial Biotechnol 2(4):521–529CrossRefGoogle Scholar
  45. Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11(3):286–289CrossRefPubMedPubMedCentralGoogle Scholar
  46. Schwin U, Schmidt E (1982) Improved degradation of mono chlorophenol by a constructed strain. Appl Environ Microbiol 44(1):33–39CrossRefGoogle Scholar
  47. Selvaratnam S, Schoedel BA, McFarland BL, Kulpa CF (1997) Application of the polymerase chain reaction (PCR) and reverse transcriptase/PCR for determining the fate of phenoldegrading Pseudomonas putida ATCC 11172 in bioaugmented sequencing batch reactor. Appl Microbiol Biotechnol 47:236–240CrossRefGoogle Scholar
  48. Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C et al (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS One 8(5):e63666. Scholar
  49. Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosys Environ. 140:339–353CrossRefGoogle Scholar
  50. Soares G G, Quick T C (1990) MVP, A novel bioinsecticide for control of the Diamondback Moth. Chapter 15: In: Proceedings of the second international workshop, 10–14 Dec., TaiwanGoogle Scholar
  51. Sosio M, Guisino F, Cappellano C, Bossi E, Puglia AM, Donadio S (2000) Artificial chromosomes for antibiotic-producing actinomycetes. Nat Biotechnol 18:343–345CrossRefPubMedPubMedCentralGoogle Scholar
  52. Strong LC, McTavish H, Sadowsky MJ, Wackett LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 1:91–98CrossRefGoogle Scholar
  53. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71(12):8500–8505CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tomasino SF, Liester RT, Dimock MB, Breach RM, Kelly JL (1995) Field performance of Clavibacter xyli subsp. cynodontis expressing the insecticidal protein gene crylA (c) of Bacillus thuringiensis against European corn borer in field corn. Biol Control 5:442–448CrossRefGoogle Scholar
  55. Tripura CB, Podile AR (2007) Properties of chimeric glucose dehydrogenase improved by site-directed mutagenesis. J Biotechnol 131:197–204CrossRefPubMedPubMedCentralGoogle Scholar
  56. UN Convention on Biological Diversity, Art. 2. Retrieved on January 3, 2017.Google Scholar
  57. Viebahn M, Glandorf DCM, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, van Loon LC, Bakker AHM (2003) Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol 69(6):3110–3118CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhou H, Wei H, Liu X, Wang Y, Zhang L, Tang W (2005) Improving biocontrol activity of Pseudomonas fluorescens through chromosomal integration of 2,4-diacetylphloroglucinol biosynthesis genes. Chinese Sci Bull 50:777–781CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • S. K. Gosal
    • 1
  • Jaspreet Kaur
    • 1
  • Jupinder Kaur
    • 1
  1. 1.Department of MicrobiologyPunjab Agricultural UniversityLudhianaIndia

Personalised recommendations