Advertisement

Phytostimulation and Biocontrol by the Plant-Associated Bacillus amyloliquefaciens FZB42: An Update

  • Rainer BorrissEmail author
Chapter
  • 32 Downloads
Part of the Environmental and Microbial Biotechnology book series (EMB)

Abstract

Bacillus amyloliquefaciens FZB42, the type strain for representatives of the plant-associated subspecies plantarum, stimulates plant growth and suppresses soil-borne plant pathogens. The strain has been sequenced in 2007. The B. amyloliquefaciens FZB42 genome reveals an unexpected potential to produce secondary metabolites. In total, 11 gene clusters representing nearly 10% of the genome are devoted to synthesizing antimicrobial metabolites and/or to confer immunity against them. Ability to synthesize nonribosomally, the antibacterial polyketides macrolactin and difficidin and the antifungal lipopeptide bacillomycin D is an unique feature of the subspecies plantarum. However, according to latest research, most of the secondary metabolites are not expressed in plant rhizosphere suggesting that the antibiome expressed during the plant-associated state of PGPR Bacilli does not reflect the vast genetic arsenal devoted to the formation of secondary metabolites. There is now strong evidence that plant-associated Bacilli trigger pathways of induced systemic resistance, which protect plants against attacks of pathogenic microbes, viruses, and nematodes.

Keywords

Bacillus amyloliquefaciens Macrolactin Antimicrobial–metabolites plantarum 

Notes

Acknowledgements

Many of the recent data, reported in this review, have been obtained in close collaboration with the Helmholtz Center in Munich in frame of the PATHCONTROL project, and the laboratory of Yuewen Gao, Nanjing Agricultural University, China, in frame of a Chinese Collaborative project, financially supported by the BMBF, the German Ministry of Education and Research. I thank especially Soumitra Paul Chowdhury, Anton Hartmann, Joachim Vater, Liming Wu, Xuewen Gao, and Ben Fan (Nanjing Forestry University) for their fruitful collaboration during the last years.

References

  1. Arguelles Arias A, Ongena M, Devreese B, Terrak M, Joris B, Fickers P (2013) Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS One 8(12):e83037.  https://doi.org/10.1371/journal.pone.0083037 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedCrossRefGoogle Scholar
  3. Bochow H, El Sayed SF, Junge H, Stavropoulos A, Schmiedeknecht G. 2001. Use of Bacillus subtilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical field crops, and its mode of action. J Plant Dis Prot 108:21–30. (in German)Google Scholar
  4. Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Heidelberg/Dordrecht/London/New York, pp 41–76CrossRefGoogle Scholar
  5. Borriss R (2013) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley Blackwell, Hoboken, NJ, pp 883–898CrossRefGoogle Scholar
  6. Borriss R (2015a) Transcriptome and proteome profiling for analyzing fates of global gene expression in plant-beneficial bacilli. Transcriptomics 3:e110.  https://doi.org/10.4172/2329-8936.1000e110 CrossRefGoogle Scholar
  7. Borriss R (2015b) Bacillus, a plant beneficial bacterium. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, HeidelbergGoogle Scholar
  8. Borriss R, Chen XH, Rueckert C, Blom J, Becker A, Baumgarth B, Fan B, Pukall R, Schumann P, Sproer C, Junge H, Vater J, Pühler A, Klenk HP (2011) Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on their discriminating complete genome sequences. Int J Syst Evol Microbiol 61:1786–1801PubMedCrossRefGoogle Scholar
  9. Burkett-Cadena M, Kokalis-Burelle N, Lawrence KS, van Santen E, Kloepper JW (2008) Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biol Control 47:55–59CrossRefGoogle Scholar
  10. Castillo JD, Lawrence KS, Kloepper JW (2013) Biocontrol of the reniform nematode by Bacillus firmus GB-126 and Paecilomyces lilacinus 251 on cotton. Plant Dis 97:967–976PubMedCrossRefGoogle Scholar
  11. Chatterjee S, Chatterjee DK, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H (1992) Mersacidin, a new antibiotic from Bacillus: fermentation, isolation, purification and chemical characterization. J Antibiot 45:832–838PubMedCrossRefGoogle Scholar
  12. Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Süssmuth RD, Borriss R (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol 188:4024–4036PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014PubMedCrossRefGoogle Scholar
  14. Chen XH, Scholz R, Borriss M, Junge H, Mögel G, Kunz S, Borriss R (2009a) Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol 140:38–44PubMedCrossRefGoogle Scholar
  15. Chen XH, Koumoutsi A, Scholz R, Borriss R (2009b) More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol 16:14–24PubMedCrossRefGoogle Scholar
  16. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Suessmuth R, Piel J, Borriss R (2009c) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37PubMedCrossRefGoogle Scholar
  17. Chowdhury SP, Dietel K, Rändler M, Schmid M, Junge H, Borriss R, Hartmann A, Grosch R (2013) Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS One 8(7):e68818.  https://doi.org/10.1371/journal.pone.0068818 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A (2015a) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant-Microbe Interact 28(9):984–995.  https://doi.org/10.1094/MPMI-03-15-0066-R CrossRefPubMedGoogle Scholar
  19. Chowdhury SP, Gao X, Hartmann A, Borriss R (2015b) Biocontrol by root-associated Bacillus amyloliquefaciens FZB42 - review. Front Microbiol 6:780.  https://doi.org/10.3389/fmicb.2015.00780 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Correa OS, Montecchia MS, Berti MF, Ferrari MCF, Pucheu NL et al (2009) Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Appl Soil Ecol 41:185–194CrossRefGoogle Scholar
  21. Cruz Ramos H, Hoffmann T, Marino M, Nedjari H, Presecan-Siedel E, Dreesen O, Glaser P, Jahn D (2000) Fermentative metabolis of Bacillus subtilis: physiology and regulation of gene expression. J Bacteriol 182:3072–3080PubMedPubMedCentralCrossRefGoogle Scholar
  22. Debois D, Jourdan E, Smargiasso N, Thonart P, de Pauw E, Ongena M (2014) Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem doi:  https://doi.org/10.1021/ac500290s, 86, 4431
  23. Dietel K, Beator B, Budiharjo A, Fan B, Borriss R (2013) Bacterial traits involved in colonization of Arabidopsis thaliana roots by Bacillus amyloliquefaciens FZB42. Plant Pathol J 29:59–66PubMedPubMedCentralCrossRefGoogle Scholar
  24. Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243CrossRefGoogle Scholar
  25. Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274CrossRefGoogle Scholar
  26. Erlacher A, Cardinale M, Grosch R, Grube M, Berg G (2014) The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol 5:175.  https://doi.org/10.3389/fmicb.2014.00175 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fan B, Chen XH, Budiharjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J Biotechnol 151:303–311PubMedCrossRefGoogle Scholar
  28. Fan B, Carvalhais LC, Becker A, Fedoseyenko D, von Wirén N, Borriss R (2012a) Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol 12:116.  https://doi.org/10.1186/1471-2180-12-116 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fan B, Borriss R, Bleiss W, Wu XQ (2012b) Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol 50:38–44PubMedCrossRefGoogle Scholar
  30. Fan B, Li L, Chao Y, Förstner K, Vogel J, Borriss R, Wu XQ (2015) dRNA-Seq reveals genomewide TSSs and noncoding RNAs of plant beneficial rhizobacterium Bacillus amyloliquefaciens FZB42. PLoS One 10(11):e0142002.  https://doi.org/10.1371/journal.pone.0142002 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grosch R, Junge H, Krebs B, Bochow H (1999) Use of Bacillus subtilis as a biocontrol agent. III Influence of Bacillus subtilis on fungal root diseases and yield in soilless culture. J Plant Dis Protec 106:568–580Google Scholar
  32. Guel A, Kidoglu F, Tuzel Y, Tuzel IH (2008) Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solarium lycopersicum L.) growing in perlite. Span Agric J Res 6:422–429CrossRefGoogle Scholar
  33. He P, Hao K, Blom J, Rückert C, Vater J, Mao Z, Wu Y, Hou M, He P, He Y, Borriss R (2012) Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. J Biotechnol 15:281–291Google Scholar
  34. Herzner AM, Dischinger J, Szekat C, Josten M, Schmitz S, Yakéléba A, Reinartz R, Jansen A, Sahl HG, Piel J, Bierbaum G (2011) Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS One 6(7):e22389.  https://doi.org/10.1371/journal.pone.0022389 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A, Leenders F, Hitzeroth G, Vater J (2004) Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Gen Genomics 272:363–378CrossRefGoogle Scholar
  36. Idris EES, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20:619–626PubMedCrossRefGoogle Scholar
  37. Idriss EES, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB 45 contributes to its plant growth-promoting effect. Microbiology 148:2097–2109PubMedCrossRefGoogle Scholar
  38. Idriss EE, Bochow H, Ross H, Borriss R (2004) Use of Bacillus subtilis and Bacillus subtilis FZB37 as biocontrol agent. VI. Phytohormone-like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45. J Plant Dis Protec 111:583–597Google Scholar
  39. Kalyon B, Helaly SE, Scholz R, Nachtigall J, Vater J, Borriss R, Süssmuth RD (2011) Plantazolicin A and B: structure of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42. Org Lett 13:2996–2999PubMedCrossRefGoogle Scholar
  40. Kierul K, Voigt B, Albrecht D, Chen XH, Carvalhais LC, Borriss R. (2015). Influence of root exudates on the extracellular proteome of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Microbiology 161(Pt 1):131–147. doi:  https://doi.org/10.1099/mic.0.083576-0
  41. Kinsinger RF, Shirk MC, Fall R (2003) Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 185(18):5627–5631PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kloepper JW, Leong J, Teintze M, Schroth M (1980) Enhancing plant growth by siderophores produces by plant-growth-promoting rhizobacteria. Nature 286:885–886CrossRefGoogle Scholar
  43. Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kröber M, Wibberg D, Grosch R, Eikmeyer F, Verwaaijen B, Chowdhury SP et al (2014) Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbiol 5:636.  https://doi.org/10.3389/fmicb.2014.00636 CrossRefGoogle Scholar
  45. Liu Z, Budiharjo A, Wang P, Shi H, Fang J, Borriss R, Zhang K, Huang X (2013) The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol 97:10081–10090PubMedCrossRefGoogle Scholar
  46. Lopez D, Fischbach MA, Chu F, Losick R, Kolter R (2009a) Structurally diverse natural products that cause leakage trigger multicellularity in Bacillus subtilis. Proc Natl Sci USA 106:280–285CrossRefGoogle Scholar
  47. Lopez D, Vlamakis H, Losick R, Kolter R (2009b) Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 74:609–618PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lugtenberg BJJ, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. In: de Brujn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley Blackwell, Hoboken, NJ, pp 561–573Google Scholar
  49. Molohon KJ, Melby JO, Lee J, Evans BS, Dunbar KL, Bumpus SB, Kelleher NL, Mitchell DA (2011) Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics. ACS Chem Biol 6(12):1307–1313PubMedPubMedCentralCrossRefGoogle Scholar
  50. Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191PubMedCrossRefGoogle Scholar
  51. Oka Y, Koltai H, Bar-Eyal M, Mor M, Sharon E, Chet I, Spiegel Y (2000) New strategies for the control of plant-parasitic nematodes. Pest Manag Sci 56:983–988CrossRefGoogle Scholar
  52. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptdes of Bacilllus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090PubMedCrossRefGoogle Scholar
  53. Raaijmakers J, De Bruin I, Nybroe O, Ongena M (2010) Natural functions of cyclic lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062PubMedCrossRefGoogle Scholar
  54. Ramírez CA, Kloepper JW (2010) Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties. Biol Fert Soils 46:835–844CrossRefGoogle Scholar
  55. Renna MC, Najimudin N, Winik LR, Zahler SA (1993) Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential phase production of acetoin. J Bacteriol 175:3863–3875PubMedPubMedCentralCrossRefGoogle Scholar
  56. Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paré PW, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3:130–138PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ryu CM, Farag MA, Hu CH, Reddy M, Wei HX, Pare PW, Kloepper J (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant physiology, March 2004. Vol 134:1017–1026Google Scholar
  59. Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. Society of Nematologists, Hyattsville, MDGoogle Scholar
  60. Schneider K, Chen XH, Vater J, Franke P, Nicholson G, Borriss R, Suessmuth RD (2007) Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J Nat Prod 70:1417–1423PubMedCrossRefGoogle Scholar
  61. Scholz R, Molohon KJ, Nachtigall J, Vater J, Markley AL, Süssmuth RD, Mitchell DA, Borriss R (2011) Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol 193:215–224PubMedCrossRefGoogle Scholar
  62. Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, Schwecke T, Herfort S, Lasch P, Borriss R (2014) Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol 196:1842–1852PubMedPubMedCentralCrossRefGoogle Scholar
  63. Singh B, Satyanarayana T (2011) Microbial phytases in phosphorous acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103PubMedPubMedCentralCrossRefGoogle Scholar
  64. Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765CrossRefGoogle Scholar
  65. Wang S, Wu H, Qiao J, Ma L, Liu J, Xia Y, Gao X (2009) Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol 19(10):1250–1258PubMedCrossRefGoogle Scholar
  66. Wu L, Wu H, Chen L, Yu XF, Borriss R, Gao X (2015a) Difficidin and bacilysin Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae from rice pathogens. Sci Rep 5:12975.  https://doi.org/10.1038/srep12975 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wu L, Wu HJ, Qiao J, Gao X, Borriss R (2015b) Novel routes for improving biocontrol activity of Bacillus based bioinoculants. Front Microbiol 6:1395.  https://doi.org/10.3389/fmicb.2015.01395 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Xia Y, Xie S, Ma X, Wu H, Wang X, Gao X (2011) The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS Microbiol Lett 322:99–107PubMedCrossRefGoogle Scholar
  69. Yao AV, Bochow H, Karimov S, Boturov U, Sanginboy S et al (2006) Effect of FZB24 Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch Phytopathol Plant Prot 39:1–6CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Humboldt-Universität zu Berlin, Institut für BiologieBerlinGermany
  2. 2.Nord Reet UGGreifswaldGermany

Personalised recommendations