RMB Exchange Rate Prediction Based on Bayesian

  • Wenyuan HuEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1117)


The traditional time series analysis and prediction methods do not take into account the prior information of samples and parameters, resulting in a large deviation between the prediction results and the actual data, and the Bayesian parameter estimation method can make full use of the prior information of the parameters. The variance of the estimated parameters is smaller, the estimated results are more accurate, and the predicted results are more real. In order to correctly analyze and predict the changing trend of RMB exchange rate, this paper selects exchange rate data of 995 working days from August 1, 2015 to August 30, 2019 to model the exchange rate of RMB against US dollar in time series autoregressive model. By using the MCMC method, I carry out the model parameters with Gibbs sampling estimation, which makes the prediction of the model more accurate.


Autoregressive model Bayesian parameter estimation MCMC method Gibbs sampling 


  1. 1.
    Di Persio, L., Frigo, M.: Gibbs sampling approach to regime switching analysis of financial time series. J. Comput. Appl. Math. 300, 43–55 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dey, T., Kim, K.H., Lim, C.Y.: Bayesian time series regression with nonparametric modeling of autocorrelation. Comput. Stat. 33(4), 1717–1731 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Nariswari, R., Pudjihastuti, H.: Bayesian forecasting for time series of count data. Procedia Comput. Sci. 157, 427–435 (2019)CrossRefGoogle Scholar
  4. 4.
    Vosseler, A., Weber, E.: Forecasting seasonal time series data: a Bayesian model averaging approach. Spring J. 33(4), 1733–1765 (2018)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Das, M., Ghosh, S.K.: semBnet: a semantic Bayesian network for multivariate prediction of meteorological time series data. Pattern Recogn. Lett. 187, 256–281 (2017)Google Scholar
  6. 6.
    Ohyver, M., Pudjihastuti, H.: ARIMA model for forecasting the price of medium quality rice to anticipate price fluctuations. Procedia Comput. Sci. 135, 707–711 (2018)CrossRefGoogle Scholar
  7. 7.
    Krafty, R.T., Rosen, O., Stoffer, D.S., Buysse, D.J., Hall, M.H.: Conditional spectral analysis of replicated multiple time series with application to nocturnal physiology. J. Am. Stat. Assoc. 112(520), 1405–1416 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zorzi, M.: Empirical Bayesian learning in AR graphical models. Automatica 109, 677–692 (2019)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Huang, Z., Shen, Q., Wu, S.: A Gibbs sampling method to determine biomarkers for asthma. Comput. Biol. Chem. 67, 255–259 (2017)CrossRefGoogle Scholar
  10. 10.
    Kolm, P., Ritter, G.: On the Bayesian interpretation of Black Litterman. Eur. J. Oper. Res. 258(2), 564–572 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Shanghai UniversityShanghaiChina

Personalised recommendations