Age Group Estimation from Human Iris

  • Minakshi R. Rajput
  • Ganesh S. Sable
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1118)


The paper presents the approach to determine the age group of a person from an iris structure using less number of features. The performance of a proposed method is evaluated based on five different classifiers. Our methodology improves on earlier methods in terms of classification accuracy and F1 score. The study also proved that human iris structure has age-related information and therefore can be used to predict age. The existing iris biometric systems can be advanced with this method if they show an age in spite of just accepting or rejecting a person.


Feature extraction Iris biometrics Age group estimation Machine learning 



Authors would like to acknowledge and thanks to UGC SAP (II) DRS Phase-I and Phase-II F. No. 3-42/2009 and 4-15/2015/DRS-II for KVKRG_Iris database and support to this work and the department of computer science and information technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India.

Declaration Authors declare that they have taken the due permission to use the image of the person in the paper, and hence, if any litigation arises in the future, authors are solely responsible.


  1. 1.
    Lanitis, A.: A survey of effects of aging on the biometric identity verification. Int. J. Biometrics. 2(1), 34 (2010)CrossRefGoogle Scholar
  2. 2.
    Browning, K., Orlans, N.: Biometric Aging Effects of Aging on Iris Recognition. MITRE (2014)Google Scholar
  3. 3.
    Aslam, T.M., Tan, S.Z., Dhillon, B.: Iris recognition in the presence of ocular disease NCBI. 6 May 2009Google Scholar
  4. 4.
    Kasthurirangan, S., Glasser, A.: Age related changes in the characteristics of the near pupil response. J. Vis. Res. 46, 1393–1403 (2006)CrossRefGoogle Scholar
  5. 5.
    Fairhurst, M., Erbilek, M.: Analysis of physical ageing effects in iris biometrics. IET Comput. Vis. Special Issue: Future Trends in Biometric Processing (2010)Google Scholar
  6. 6.
    Bowyer, K.W., Baker, S.E., Hentz, A., Hollingsworth, K., Peters, T., Flynn, P.J.: Factors that degrade the match distribution in iris biometrics. Open Access Springer Link (2009)Google Scholar
  7. 7.
    Fenker, S.P., Bowyer, K.W.: Analysis of template aging in iris biometrics, In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, pp. 45–51 (2012)Google Scholar
  8. 8.
    Mehrotra, H., Vatsa, M., Singh, R., Majhi, B.: Does Iris Change Over Time? PLOS-ONE Open access Journal (2013)Google Scholar
  9. 9.
    Fenker, S., Ortiz, E., Bowyer, K.: Template aging phenomenon in iris recognition. IEEE Access 1, 266–274 (2003)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Baker, S., Bowyer, K.W., Flynn, P.: Empirical evidence for correct iris match score degradation with increased time lapse between gallery and probe matches. In: International Conference on Biometrics, pp. 1170–1179 (2009)Google Scholar
  12. 12.
    Hayashi, K., Hayashi, H., Hayashi, F.: Topographic analysis of the changes in corneal shape due to aging. Cornea 14(5), 597 (1995)CrossRefGoogle Scholar
  13. 13.
    Dubbelman, M., Sicam, V.A.D.P., Van der Heijde, G.L.: The shape of the anterior and posterior surface of the aging human cornea. Vis. Res. 46(6–7), 993–1001 (2006)Google Scholar
  14. 14.
    Melange, P.A., Sable, G.S.: Age group estimation and gender recognition using face features. Int. J. Eng. Sci. 7, 1–7 (2018)Google Scholar
  15. 15.
    Batool, N., Chellappa, R: Modeling and detection of wrinkles in aging human faces using marked point processes. In: European Conference on Computer Vision ECCV, pp. 178–188 (2012)Google Scholar
  16. 16.
    Rybintsev, A: Age estimation from a face image in a selected gender-race group based on ranked local binary patterns. Complex Intell. Syst. 93–104 (2017)Google Scholar
  17. 17.
    Ku, C.L., Chiou, C.H., Gao, Z.Y., Tsai, Y.J., Fuh, C.S.: Age and gender estimation using multiple-image features. Lecture Notes in Computer Science, vol. 8232 (2013)Google Scholar
  18. 18.
    Erbilek, M., Fairhurst, M., Abreu, M.C.D.C.: Age prediction from iris biometrics. In: 5th International Conference on Imaging for Crime Detection and Prevention. ICDP (2013)Google Scholar
  19. 19.
    Sgroi, A., Bowyer, K.W., Flynn, P.J.: The prediction of old and young subjects from iris texture. In: International Conference on Biometrics (ICB), published on IEEE Digital Explore (2013)Google Scholar
  20. 20.
  21. 21.
    Machine Learning Tutorial-2. Recall, Precision, F1-measure, Accuracy Ch. 5.
  22. 22.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Minakshi R. Rajput
    • 1
  • Ganesh S. Sable
    • 2
  1. 1.NIELITDr. B.A.M. UniversityAurangabadIndia
  2. 2.Maharashtra Institute of TechnologyDr. B.A.M. UniversityAurangabadIndia

Personalised recommendations