Review of Maximum-Efficiency-Operation Techniques

  • Wenxing ZhongEmail author
  • Dehong Xu
  • Ron Shu Yuen Hui
Part of the CPSS Power Electronics Series book series (CPSS)


In the design stage of a WPT system, many aspects including maximum achievable efficiency, misalignment tolerance, stray magnetic fields, etc., should be considered. However, after a WPT system is designed and fabricated, its maximum achievable efficiency is determined. Yet the system might not be able to operate at this maximum efficiency because the actual efficiency of a WPT system is highly dependent on the mutual coupling and the equivalent load resistance which are varying. To ensure a WPT system to operate at the maximum achievable efficiency regardless of the mutual coupling and the load resistance, the actual load resistance should be matched to the optimal load resistance of the system in real time. This chapter reviews some technical approaches for achieving maximum or near-maximum efficiency operations in WPT systems.


  1. 1.
    Zhong WX, Hui SYR (2015) Maximum energy efficiency tracking for wireless power transfer systems. IEEE Trans Power Electron 30(7):4025–4034CrossRefGoogle Scholar
  2. 2.
    Hui SYR, Zhong W, Lee CK (2014) A critical review of recent progress in mid-range wireless power transfer. IEEE Trans Power Electron 29(9):4500–4511CrossRefGoogle Scholar
  3. 3.
    Bosshard R, Kolar JW, Mühlethaler J, Stevanović I, Wunsch B, Canales F (2015) Modeling and η-α-Pareto optimization of inductive power transfer coils for electric vehicles. IEEE J Emerg Sel Top Power Electron 3(1):50–64CrossRefGoogle Scholar
  4. 4.
    Moriwaki Y, Imura T, Hori Y (2011) Basic study on reduction of reflected power using DC/DC converters in wireless power transfer system via magnetic resonant coupling. In: 2011 IEEE 33rd international telecommunications energy conference (INTELEC), Amsterdam, pp 1–5Google Scholar
  5. 5.
    Fu M, Yin H, Zhu X, Ma C (2015) Analysis and tracking of optimal load in wireless power transfer systems. IEEE Trans Power Electron 30(7):3952–3963CrossRefGoogle Scholar
  6. 6.
    Li H, Li J, Wang K, Chen W, Yang X (2015) A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling. IEEE Trans Power Electron 30(7):3998–4008CrossRefGoogle Scholar
  7. 7.
    Patil D, Sirico M, Gu L, Fahimi B (2016) Maximum efficiency tracking in wireless power transfer for battery charger: Phase shift and frequency control. In: 2016 IEEE energy conversion congress and exposition (ECCE), Milwaukee, WI, pp 1–8Google Scholar
  8. 8.
    Jiwariyavej V, Imura T, Hori Y (2015) Coupling coefficients estimation of wireless power transfer system via magnetic resonance coupling using information from either side of the system. IEEE J Emerg Sel Top Power Electron 3(1):191–200CrossRefGoogle Scholar
  9. 9.
    Kobayashi D, Imura T, Hori Y (2015) Real-time coupling coefficient estimation and maximum efficiency control on dynamic wireless power transfer using secondary DC-DC converter. In: IECON 2015—41st annual conference of the IEEE Industrial Electronics Society, Yokohama, 2015, pp 4650–4655Google Scholar
  10. 10.
    Dai X, Li X, Li Y, Hu AP (2018) Maximum efficiency tracking for wireless power transfer systems with dynamic coupling coefficient estimation. IEEE Trans Power Electron 33(6):5005–5015CrossRefGoogle Scholar
  11. 11.
    Fu M, Yin H, Liu M, Ma C (2016) Loading and power control for a high-efficiency Class E PA-driven megahertz WPT system. IEEE Trans Ind Electron 63(11):6867–6876CrossRefGoogle Scholar
  12. 12.
    Yeo TD, Kwon D, Khang ST, Yu JW (2017) Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank. IEEE Trans Power Electron 32(1):471–478CrossRefGoogle Scholar
  13. 13.
    Huang Z, Wong SC, Tse CK (2018) Control design for optimizing efficiency in inductive power transfer systems. IEEE Trans Power Electron 33(5):4523–4534CrossRefGoogle Scholar
  14. 14.
    Ahn D, Kim S, Moon J, Cho IK (2016) Wireless power transfer with automatic feedback control of load resistance transformation. IEEE Trans Power Electron 31(11):7876–7886CrossRefGoogle Scholar
  15. 15.
    Tang X, Zeng J, Pun KP, Mai S, Zhang C, Wang Z (2018) Low-cost maximum efficiency tracking method for wireless power transfer systems. IEEE Trans Power Electron 33(6):5317–5329CrossRefGoogle Scholar
  16. 16.
    Kiani M, Lee B, Yeon P, Ghovanloo M (2015) A Q-modulation technique for efficient inductive power transmission. IEEE J Solid-State Circuits 50(12):2839–2848CrossRefGoogle Scholar
  17. 17.
    Yuan L, Li B, Zhang Y, He F, Chen K, Zhao Z (2015) Maximum efficiency point tracking of the wireless power transfer system for the battery charging in electric vehicles. In: 2015 18th international conference on electrical machines and systems (ICEMS), Pattaya, pp 1101–1107Google Scholar
  18. 18.
    Zhong W, Hui SYR (2017) Charging time control of wireless power transfer systems without using mutual coupling information and wireless communication system. IEEE Trans Ind Electron 64(1):228–235CrossRefGoogle Scholar
  19. 19.
    Diekhans T, De Doncker RW (2015) A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load. IEEE Trans Power Electron 30(11):6320–6328CrossRefGoogle Scholar
  20. 20.
    Berger A, Agostinelli M, Vesti S, Oliver JA, Cobos JA, Huemer M (2015) A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power. IEEE Trans Power Electron 30(11):6338–6348CrossRefGoogle Scholar
  21. 21.
    Colak K, Asa E, Bojarski M, Czarkowski D, Onar OC (2015) A novel phase-shift control of semibridgeless active rectifier for wireless power transfer. IEEE Trans Power Electron 30(11):6288–6297CrossRefGoogle Scholar
  22. 22.
    Mai R, Liu Y, Li Y, Yue P, Cao G, He Z. An active rectifier based maximum efficiency tracking method using an additional measurement coil for wireless power transfer. IEEE Trans Power Electron (in press)Google Scholar
  23. 23.
    Li H, Fang J, Chen S, Wang K, Tang Y. Pulse density modulation for maximum efficiency point tracking of wireless power transfer systems. IEEE Trans Power ElectronGoogle Scholar
  24. 24.
    Li H, Wang K, Fang J, Tang Y. Pulse density modulated ZVS full-bridge converters for wireless power transfer systems. IEEE Trans Power Electron (in press)Google Scholar
  25. 25.
    Zhong W, Hui SYR (2018) Maximum energy efficiency operation of series-series resonant wireless power transfer systems using on-off keying modulation. IEEE Trans Power Electron 33(4):3595–3603CrossRefGoogle Scholar
  26. 26.
    Beh TC, Kato M, Imura T, Oh S, Hori Y (2013) Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling. IEEE Trans Ind Electron 60(9):3689–3698CrossRefGoogle Scholar
  27. 27.
    Jung YK, Lee B (2013) Design of adaptive optimal load circuit for maximum wireless power transfer efficiency. In: 2013 Asia-Pacific microwave conference proceedings (APMC), Seoul, pp 1221–1223Google Scholar
  28. 28.
    Lim Y, Tang H, Lim S, Park J (2014) An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer. IEEE Trans Power Electron 29(8):4403–4413CrossRefGoogle Scholar
  29. 29.
    Gernsback H (ed) Lighting lamp by S-W-radio. Short wave & television, pp 166 and 191Google Scholar
  30. 30.
    Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljacic M (2007) Wireless power transfer via strongly coupled magnetic resonances. Sci Express 317:83–86MathSciNetGoogle Scholar
  31. 31.
    Choi BH, Lee ES, Huh J, Rim CT (2015) Lumped impedance transformers for compact and robust coupled magnetic resonance systems. IEEE Trans Power Electron 30(11):6046–6056CrossRefGoogle Scholar
  32. 32.
    Kiani M, Jow U, Ghovanloo M (2011) Design and optimization of a three-resonator inductive link for efficient wireless power transmission. IEEE Trans Biomed Circuits Syst 5:579–591CrossRefGoogle Scholar
  33. 33.
    Zhong WX, Zhang C, Liu X, Hui SYR (2015) A methodology for making a three-resonator wireless power transfer system more energy efficient than a two-resonator counterpart for extended transmission distance. IEEE Trans Power Electron 30(2):933–942CrossRefGoogle Scholar
  34. 34.
    Kim J, Choi W-S, Jeong J (2013) Loop switching technique for wireless power transfer using magnetic resonance coupling. Progr Electromagn Res 138:197–209CrossRefGoogle Scholar
  35. 35.
    Lee G, Waters BH, Shin YG, Smith JR, Park WS (2016) A reconfigurable resonant coil for range adaptation wireless power transfer. IEEE Trans Microw Theory Tech 64(2):624–632CrossRefGoogle Scholar
  36. 36.
    Duong TP, Lee JW (2011) Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method. IEEE Microw Wirel Compon Lett 21(8):442–444CrossRefGoogle Scholar
  37. 37.
    Mercier PP, Chandrakasan AP (2013) Rapid wireless capacitor charging using a multi-tapped inductively-coupled secondary coil. IEEE Trans Circuits Syst I Regul Pap 60(9):2263–2272MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhong W, Hui SYR. Reconfigurable wireless power transfer systems with high energy efficiency over wide load range. IEEE Trans Power Electron (in press)Google Scholar
  39. 39.
    Lin D, Yin J, Hui SYR (2014) Parameter identification of wireless power transfer systems using input voltage and current. In: 2014 IEEE energy conversion congress and exposition (ECCE), Pittsburgh, PA, pp 832–836Google Scholar
  40. 40.
    Liu F, Lei W, Wang T, Nie C, Wang Y (2017) A phase-shift soft-switching control strategy for dual active wireless power transfer system. In: 2017 IEEE energy conversion congress and exposition (ECCE), Cincinnati, OH, pp 2573–2578Google Scholar
  41. 41.
    Jiang Y, Wang L, Wang Y, Liu J, Li X, Ning G. Analysis, design and implementation of accurate ZVS angle control for EV’s battery charging in wireless high power transfer. IEEE Trans Ind Electron (in press)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.College of Electrical EngineeringZhejiang UniversityHangzhouChina
  2. 2.The University of Hong KongHong KongChina

Personalised recommendations