Advertisement

Sudomotor Dysfunction and Histopathology in Diabetic Neuropathy

  • Sanjeev Kelkar
Chapter
  • 66 Downloads

Abstract

Sudomotor dysfunction means the dysfunction of the sweat glands. It is often randomly patchy; sometimes the patches are really extensive. Diabetes is one of the frequent causes. Sweating is an important homeostatic mechanism for thermoregulation of the body. Internal visceral and superficial peripheral thermoreceptors form the two sensory inputs to determine sudomotor activity and vascular response of vasodilation or constriction of the arterial tree to achieve this. Up to 3.5 L of sweat can be produced per day depending on humidity, ambient temperature, age, inter- and intra-subject variability, sweat gland density, and gender.

Histopathological information provided here will help by giving a visual and quantitative idea of the structural components of the nerves, the intra-epidermal nerve fiber density, and the functional abnormalities much better. Corneal confocal microscopy (CCM) is also discussed in this chapter.

References

  1. 1.
    Casellini CM, Parson HK, Richardson MS, Nevoret ML, Vinik AI. Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes Technol Ther. 2013;15:948–53.  https://doi.org/10.1089/dia.2013.0129.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ziemssen T, Siepmann T. The Investigation of the cardiovascular and sudomotor autonomic nervous system—a review. Front Neurol. 2019;10:53. www.frontiersin.org.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Krieger SM, Reimann M, Haase R, Henkel E, Hanefeld M, Ziemssen T. Sudomotor testing of diabetes polyneuropathy. Front Neurol. 2018;9:803.  https://doi.org/10.3389/fneur.2018.00803. Published online 2018 Sep 26.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lewis JE, Atlas SE, Rasul A, Farooqi A, Lantigua L, Higuera OL, Fiallo A, Laria L, Picciani R, Wals K, Yehoshua Z, Mendez A, Konefal J, Goldberg S, Woolger J, Lewis, et al. New method of sudomotor function measurement to detect microvascular disease and sweat gland nerve or unmyelinated C fiber dysfunction in adults with retinopathy. J Diabet Metab Disord. 2017;16:26.  https://doi.org/10.1186/s40200-017-0307-5.CrossRefGoogle Scholar
  5. 5.
    Lynn Ang MD, Jaiswal M, Callaghan B, Raffel D, Brown MB, Pop-Busui R. Sudomotor dysfunction as a measure of small fiber neuropathy in type 1 diabetes. Auton Neurosci. 2017;205:87–92.  https://doi.org/10.1016/j.autneu.2017.03.001.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Devigili G, Tugnoli V, Penza P, Camozzi F, Lombardi R, Melli G, Broglio L, Granieri E, Lauria G. The diagnostic criteria for small fiber neuropathy: from symptoms to neuropathology. Brain. 2008;131(Pt 7):19121925.Google Scholar
  7. 7.
    Lauria G, Lombardi R, Camozzi F, Devigili G. Skin biopsy for the diagnosis of peripheral neuropathy. Histopathology. 2009;54(3):273–85.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G, Smith AG, Hsieh ST, Mellgren SI, Umapathi T, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010;15(3):202–7.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lauria G, Hsieh ST, Johansson O, Kennedy WR, Leger JM, Mellgren SI, Nolano M, Merkies IS, Polydefkis M, Smith AG, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol. 2010;17(7):903–12. e944-e909.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lauria G. Small fibre neuropathies. Curr Opin Neurol. 2005;18(5):591–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Themistocleous AC, Ramirez JD, Serra J, Bennett DL. The clinical approach to small fibre neuropathy and painful channelopathy. Pract Neurol. 2014;14(6):368–79.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Nebuchennykh M, Loseth S, Lindal S, Mellgren SI. The value of skin biopsy with recording of intraepidermal nerve fiber density and quantitative sensory testing in the assessment of small fiber involvement in patients with different causes of polyneuropathy. J Neurol. 2009;256(7):1067–75.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bakkers M, Merkies IS, Lauria G, Devigili G, Penza P, Lombardi R, Hermans MC, van Nes SI, De Baets M, Faber CG. Intraepidermal nerve fiber density and its application in sarcoidosis. Neurology. 2009;73:1142–8.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lauria G, Cornblath DR, Johansson O, JC MA, Mellgren SI, Nolano M, Rosenberg N, Sommer C, European Federation of Neurological Societies. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol. 2005;12:747–58.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sorensen L, Molyneaux L, Yue DK. The relationship among pain, sensory loss, and small nerve fibers in diabetes. Diabetes Care. 2006;29:883–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Løseth S, Stalberg EV, Lindal S, Olsen E, Jorde R, Mellgren SI. Small and large fiber neuropathy in those with type 1 and type 2 diabetes: a 5-year follow-up study. J Peripher Nerv Syst. 2016;21:15–21.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Polydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain. 2004;127(Pt 7):1606–15.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Narayanaswamy H, Facer P, Misra VP, Timmers M, Byttebier G, Meert T, Anand P. A longitudinal study of sensory biomarkers of progression in patients with diabetic peripheral neuropathy using skin biopsies. J Clin Neurosci. 2012;19:14906.CrossRefGoogle Scholar
  19. 19.
    Smith AG, Russell J, Feldman EL, Goldstein J, Peltier A, Smith S, Hamwi J, Pollari D, Bixby B, Howard J, Singleton JR. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29:1294–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Loseth S, Mellgren SI, Jorde R, Lindal S, Stalberg E. Polyneuropathy in type 1 and type 2 diabetes: comparison of nerve conduction studies, thermal perception thresholds and intra-epidermal nerve fibre densities. Diabetes Metab Res Rev. 2010;26:100–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Alam U, Jeziorska M, Petropoulos IN, Asghar O, Fadavi H, Ponirakis G, Marshall A, Tavakoli M, Boulton AJM, Efron N, Malik RA. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PLoS One. 2017;12:e0180175.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Luciano CA, Pardo CA, McArthur JC. Recent developments in the HIV neuropathies. Curr Opin Neurol. 2003;16:403–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Loseth S, Stalberg E, Jorde R, Mellgren SI. Early diabetic neuropathy: thermal thresholds and intraepidermal nerve fibre density in patients with normal nerve conduction studies. J Neurol. 2008;255:1197–202.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003;60:108–11.CrossRefGoogle Scholar
  25. 25.
    Dyck PJ, Lais A, Karnes JL, O’Brien P, Rizza R. Fiber loss is primary and multifocal in sural nerves in diabetic polyneuropathy. Ann Neurol. 1986;19:425–39.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Behse F, Buchthal F, Carlsen F. Nerve biopsy and conduction studies in diabetic neuropathy. J Neurol Neurosurg Psychiatry. 1977;40:1072–82.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kennedy JM, Zochodne DW. Impaired peripheral nerve regeneration in diabetes mellitus. J Peripher Nerv Syst. 2005;10:144–57. [PMID: 15958126].  https://doi.org/10.1111/j.1085-9489.2005.0010205.x.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Petropoulos IN, Green P, Chan AW, Alam U, Fadavi H, Marshall A, Asghar O, Efron N, Tavakoli M, Malik RA. Corneal confocal microscopy detects neuropathy in patients with type 1 diabetes without retinopathy or microalbuminuria. PLoS One. 2015;10(4):e0123517.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Pritchard N, Edwards K, Russell AW, Perkins BA, Malik RA, Efron N. Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes. Diabetes Care. 2015;38(4):671–5.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Petropoulos IN, Ponirakis G, Khan A, Almuhannadi H, Gad H, Malik RA. Diagnosing diabetic neuropathy: something old, something new. Diabetes Metab J. 2018;42:255–26.  https://doi.org/10.4093/dmj.2018.0056. pISSN 2233-6079 · eISSN 2233-6087.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rosenberg ME, Tervo TM, Immonen IJ, Muller LJ, Gronhagen-Riska C, Vesaluoma MH. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2000;41:2915–21.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Malik RA, Kallinikos P, Abbott CA, van Schie CH, Morgan P, Efron N, Boulton AJ. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia. 2003;46:683–8.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Jiang MS, Yuan Y, Gu ZX, Zhuang SL. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta-analysis. Br J Ophthalmol. 2016;100:9–14.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Muller LJ, Pels L, Vrensen GF. Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci. 1996;37:476–88.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Muller LJ, Marfurt CF, Kruse F, Tervo TM. Corneal nerves: structure, contents and function. Exp Eye Res. 2003;76:521–42.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ziegler D, Papanas N, Zhivov A, Allgeier S, Winter K, Ziegler I, Bruggemann J, Strom A, Peschel S, Kohler B, Stachs O, Guthoff RF, Roden M, German Diabetes Study (GDS) Group. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes. 2014;63:2454–63.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Petropoulos IN, Ferdousi M, Marshall A, Alam U, Ponirakis G, Azmi S, Fadavi H, Efron N, Tavakoli M, Malik RA. The inferior whorl for detecting diabetic peripheral neuropathy using corneal confocal microscopy. Invest Ophthalmol Vis Sci. 2015;56:2498–504.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Maddaloni E, Sabatino F, Del Toro R, Crugliano S, Grande S, Lauria Pantano A, Maurizi AR, Palermo A, Bonini S, Pozzilli P, Manfrini S. In vivo corneal confocal microscopy as a novel non-invasive tool to investigate cardiac autonomic neuropathy in type 1 diabetes. Diabet Med. 2015;32:262–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Kowtharapu BS, Winter K, Marfurt C, Allgeier S, Köhler B, Hovakimyan M, Stahnke T, Wree A, Stachs O, Guthoff RF. Comparative quantitative assessment of the human corneal sub-basal nerve plexus by in vivo confocal microscopy and histological staining. Eye (Lond). 2017;31:481–90.CrossRefGoogle Scholar
  40. 40.
    Ziegler D, Winter K, Strom A, Zhivov A, Allgeier S, Papanas N, Ziegler I, Bruggemann J, Ringel B, Peschel S, Kohler B, Stachs O, Guthoff RF, Roden M, German Diabetes Study (GDS) Group. Spatial analysis improves the detection of corneal nerve fiber loss in patients with recently diagnosed type 2 diabetes. PLoS One. 2017;12:e0173832.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Brines M, Culver DA, Ferdousi M, Tannemaat MR, van Velzen M, Dahan A, Malik RA. Corneal nerve fiber size adds utility to the diagnosis and assessment of therapeutic response in patients with small fiber neuropathy. Sci Rep. 2018;8:4734.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chen X, Graham J, Petropoulos IN, Ponirakis G, Asghar O, Alam U, Marshall A, Ferdousi M, Azmi S, Efron N, Malik RA. Corneal nerve fractal dimension: a novel corneal nerve metric for the diagnosis of diabetic sensorimotor polyneuropathy. Invest Ophthalmol Vis Sci. 2018;59:1113–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, Marshall A, Boulton AJ, Efron N, Malik RA. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56:2148–54.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Petropoulos IN, Manzoor T, Morgan P, Fadavi H, Asghar O, Alam U, Ponirakis G, Dabbah MA, Chen X, Graham J, Tavakoli M, Malik RA. Repeatability of in vivo corneal confocal microscopy to quantify corneal nerve morphology. Cornea. 2013;32:e83–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Efron N, Edwards K, Roper N, Pritchard N, Sampson GP, Shahidi AM, Vagenas D, Russell A, Graham J, Dabbah MA, Malik RA. Repeatability of measuring corneal subbasal nerve fiber length in individuals with type 2 diabetes. Eye Contact Lens. 2010;36:245–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hertz P, Bril V, Orszag A, Ahmed A, Ng E, Nwe P, Ngo M, Perkins BA. Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabet Med. 2011;28:1253–60.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kalteniece A, Ferdousi M, Adam S, Schofield J, Azmi S, Petropoulos I, Soran H, Malik RA. Corneal confocal microscopy is a rapid reproducible ophthalmic technique for quantifying corneal nerve abnormalities. PLoS One. 2017;12:e0183040.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Scarr D, Lovblom LE, Ostrovski I, Kelly D, Wu T, Farooqi MA, Halpern EM, Ngo M, Ng E, Orszag A, Bril V, Perkins BA. Agreement between automated and manual quantification of corneal nerve fiber length: implications for diabetic neuropathy research. J Diabetes Complicat. 2017;31:1066–73.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Tavakoli M, Ferdousi M, Petropoulos IN, Morris J, Pritchard N, Zhivov A, Ziegler D, Pacaud D, Romanchuk K, Perkins BA, Lovblom LE, Bril V, Singleton JR, Smith G, Boulton AJ, Efron N, Malik RA. Normative values for corneal nerve morphology assessed using corneal confocal microscopy: a multinational normative data set. Diabetes Care. 2015;38:838–43.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dehghani C, Pritchard N, Edwards K, Vagenas D, Russell AW, Malik RA, Efron N. Morphometric stability of the corneal subbasal nerve plexus in healthy individuals: a 3-year longitudinal study using corneal confocal microscopy. Invest Ophthalmol Vis Sci. 2014;55:3195–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Azmi S, Ferdousi M, Alam U, Petropoulos IN, Ponirakis G, Marshall A, Asghar O, Fadavi H, Jones W, Tavakoli M, Boulton AJM, Jeziorska M, Soran H, Efron N, Malik RA. Small-fibre neuropathy in men with type 1 diabetes and erectile dysfunction: a cross-sectional study. Diabetologia. 2017;60:1094101.CrossRefGoogle Scholar
  52. 52.
    Kalteniece A, Ferdousi M, Petropoulos I, Azmi S, Adam S, Fadavi H, Marshall A, Boulton AJM, Efron N, Faber CG, Lauria G, Soran H, Malik RA. Greater corneal nerve loss at the inferior whorl is related to the presence of diabetic neuropathy and painful diabetic neuropathy. Sci Rep. 2018;8:3283.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sivaskandarajah GA, Halpern EM, Lovblom LE, Weisman A, Orlov S, Bril V, Perkins BA. Structure-function relationship between corneal nerves and conventional small-fiber tests in type 1 diabetes. Diabetes Care. 2013;36:2748–55.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gotze A, von Keyserlingk S, Peschel S, Jacoby U, Schreiver C, Kohler B, Allgeier S, Winter K, Rohlig M, Junemann A, Guthoff R, Stachs O, Fischer DC. The corneal sub-basal nerve plexus and thickness of the retinal layers in pediatric type 1 diabetes and matched controls. Sci Rep. 2018;8:14.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Tavakoli M, Mitu-Pretorian M, Petropoulos IN, Fadavi H, Asghar O, Alam U, Ponirakis G, Jeziorska M, Marshall A, Efron N, Boulton AJ, Augustine T, Malik RA. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes. 2013;62:254–60.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Lewis EJH, Perkins BA, Lovblom LE, Bazinet RP, Wolever TMS, Bril V. Effect of omega-3 supplementation on neuropathy in type 1 diabetes: a 12-month pilot trial. Neurology. 2017;88:2294–301.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    van Velzen M, Heij L, Niesters M, Cerami A, Dunne A, Dahan A, Brines M. ARA 290 for treatment of small fiber neuropathy in sarcoidosis. Expert Opin Investig Drugs. 2014;23:541–50.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Dahan A, Dunne A, Swartjes M, Proto PL, Heij L, Vogels O, van Velzen M, Sarton E, Niesters M, Tannemaat MR, Cerami A, Brines M. ARA 290 improves symptoms in patients with sarcoidosis-associated small nerve fiber loss and increases corneal nerve fiber density. Mol Med. 2013;19:334–45.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Culver DA, Dahan A, Bajorunas D, Jeziorska M, van Velzen M, Aarts LPHJ, Tavee J, Tannemaat MR, Dunne AN, Kirk RI, Petropoulos IN, Cerami A, Malik RA, Brines M. Cibinetide improves corneal nerve fiber abundance in patients with sarcoidosis-associated small nerve fiber loss and neuropathic pain. Invest Ophthalmol Vis Sci. 2017;58:BIO52–60.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Brines M, Dunne AN, van Velzen M, Proto PL, Ostenson CG, Kirk RI, Petropoulos IN, Javed S, Malik RA, Cerami A, Dahan A. ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol Med. 2015;20:658–66.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lovblom LE, Halpern EM, Wu T, Kelly D, Ahmed A, Boulet G, Orszag A, Ng E, Ngo M, Bril V, Perkins BA. In vivo corneal confocal microscopy and prediction of future-incident neuropathy in type 1 diabetes: a preliminary longitudinal analysis. Can J Diabetes. 2015;39:390–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Azmi S, Ferdousi M, Petropoulos IN, Ponirakis G, Alam U, Fadavi H, Asghar O, Marshall A, Atkinson AJ, Jones W, Boulton AJ, Tavakoli M, Jeziorska M, Malik RA. Corneal confocal microscopy identifies small-fiber neuropathy in subjects with impaired glucose tolerance who develop type 2 diabetes. Diabetes Care. 2015;38:1502–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Haanpaa M, Attal N, Backonja M, et al. NeuPSIG guidelines on neuropathic pain assessment. Pain. 2011;152:14–27.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sanjeev Kelkar
    • 1
  1. 1.Independent Health ResearcherPuneIndia

Personalised recommendations