Treatment of Painful Diabetic Neuropathy

  • Sanjeev Kelkar


Despite having a detailed understanding of the pathophysiology of diabetic neuropathy and considerable work on its painful part, it still remains a difficult if not impossible task to control pain in painful neuropathies in diabetes. Relief comes, often partial and almost never complete, with a heavy burden of drugs and lingering side effects. Strangely the drugs that are generally effective have little to do with the pathogenesis of the neuropathy or pain. Severe neuropathic pain often leads to depression and the drugs which are often effective in it are useful for alleviating diabetic neuropathy pain also. There are other drugs which may have to do something with pathogenesis, remain experimental or extremely difficult to administer, like C-peptide, or have been proved to be of no use at all like Aldose Reductase inhibitors despite the pathophysiological connection to their actions.


  1. 1.
    Boulton AJ, Vinik AI, Arezzo JC, et al. For the American Diabetes Association. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28:956–62.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Apfel SC, Asbury AK, Bril V, for the Ad Hoc Panel on Endpoints for Diabetic Neuropathy Trials, et al. Positive neuropathic sensory symptoms as endpoints in diabetic neuropathy trials. J Neurol Sci. 2001;189:3–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Attal N, Cruccu G, Baron R, Haanpaa M, Hansson P, Jensen TS, Nurmikko T. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2009 revision. Eur J Neurol. 2010;17:1113. –1e88. [PubMed: 20402746].PubMedCrossRefGoogle Scholar
  4. 4.
    Dworkin RH, O'Connor AB, Audette J, Baron R, Gourlay GK, Haanpaa ML, Kent JL, Krane EJ, Lebel AA, Levy RM, Mackey SC, Mayer J, Miaskowski C, Raja SN, Rice AS, Schmader KE, Stacey B, Stanos S, Treede RD, Turk DC, Walco GA, Wells CD. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc. 2010;85:S3–S14. [PubMed: 20194146].PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Moulin DE, Clark AJ, Gilron I, Ware MA, Watson CP, Sessle BJ, Coderre T, Morley-Forster PK, Stinson J, Boulanger A, Peng P, Finley GA, Taenzer P, Squire P, Dion D, Cholkan A, Gilani A, Gordon A, Henry J, Jovey R, Lynch M, Mailis-Gagnon A, Panju A, Rollman GB, Velly A. Pharmacological management of chronic neuropathic pain - consensus statement and guidelines from the Canadian Pain Society. Pain Res Manag. 2007;12:13–21. [PubMed: 17372630].PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Acevedo JC, Amaya A, Casasola OL, Chinchilla N, De GM, Florez S, Genis MA, Gomez-Barrios JV, Hernandez JJ, Ibarra E, Moreno C, Orrillo E, Pasternak D, Romero S, Vallejo M, Velasco M, Villalobos A. Guidelines for the diagnosis and management of neuropathic pain: consensus of a group of Latin American experts. J Pain Palliat Care Pharmacother. 2009;23:261–81. [PubMed: 19670022].PubMedCrossRefGoogle Scholar
  7. 7.
    Bohlega S, Alsaadi T, Amir A, Hosny H, Karawagh AM, Moulin D, Riachi N, Salti A, Shelbaya S. Guidelines for the pharmacological treatment of peripheral neuropathic pain: expert panel recommendations for the middle east region. J Int Med Res. 2010;38:295–317. [PubMed: 20515552].PubMedCrossRefGoogle Scholar
  8. 8.
    Attal N, Cruccu G, Haanpaa M, Hansson P, Jensen TS, Nurmikko T, Sampaio C, Sindrup S, Wiffen P. EFNS guidelines on pharmacological treatment of neuropathic pain. Eur J Neurol. 2006;13:1153–69. [PubMed: 17038030].PubMedCrossRefGoogle Scholar
  9. 9.
    Dooley DJ, Mieske CA, Borosky SA. Inhibition of K(+)-evoked glutamate release from rat neocortical and hippocampal slices by gabapentin. Neurosci Lett. 2000;280:107–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Maneuf YP, McKnight AT. Block by gabapentin of the facilitation of glutamate release from rat trigeminal nucleus following activation of protein kinase C or adenylyl cyclase. Br J Pharmacol. 2001;134:237–40.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dooley DJ, Donovan CM, Pugsley TA. Stimulus-dependent modulation of [3H]-norepinephrine release from rat neocortical slices by gabapentin and pregabalin. J Pharmacol Exp Ther. 2000;295:1086–93.PubMedGoogle Scholar
  12. 12.
    Field MJ, Oles RJ, Singh L. Pregabalin may represent a novel class of anxiolytic agents with a broad spectrum of activity. Br J Pharmacol. 2001;132:1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309–38.PubMedCrossRefGoogle Scholar
  14. 14.
    Fehrenbacher JC, Taylor CP, Vasko MR. Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase C. Pain. 2003;105:133–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Dooley DJ, Donovan CM, Meder WP, et al. Preferential action of gabapentin and pregabalin at P/Q-type voltage-sensitive calcium channels: inhibition of K-evoked [3H]-norepinephrine release from rat neocortical slices. Synapse. 2002;45:171–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Busch J, Strand JA, Posvar EL, et al. Pregabalin single-dose pharmacokinetics and safety/tolerance in healthy subjects after oral administration of pregabalin solution or capsule doses. Epilepsia. 1998;39(suppl 6):58. Abstract.Google Scholar
  17. 17.
    Jones DL, Sorkin LS. Systemic gabapentin and S(+)-3-isobutyl-gammaaminobutyric acid block secondary hyperalgesia. Brain Res. 1998;81:93–9.CrossRefGoogle Scholar
  18. 18.
    Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med. 2005;352:1324–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Wong M-c, Chung JWY, Wong TKS. Effects of treatments for symptoms of painful diabetic neuropathy: systematic review. BMJ. 2007;335:87.; originally published online 11 Jun 2007. Scholar
  20. 20.
    Clark FM, Proudfit HK. The projections of noradrenergic neurons in the A5 catecholamine cell group to the spinal cord in the rat: anatomical evidence that A5 neurons modulate nociception. Brain Res. 1993;616:200–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Coderre TJ, Katz J. Peripheral and central hyperexcitability: differential signs and symptoms in persistent pain. Behav Brain Sci. 1997;20:404–19.PubMedCrossRefGoogle Scholar
  22. 22.
    Rowbotham MC, Goli V, Kunz NR, et al. Venlafaxine extended release in the treatment of painful diabetic neuropathy: a double-blind, placebo-controlled study. Pain. 2004;110:697–706.PubMedCrossRefGoogle Scholar
  23. 23.
    Davis JL, Smith RL. Painful peripheral diabetic neuropathy treated with venlafaxine HCL extended release capsules. Diabetes Care. 1999;22:1909–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Lithner F. Venlafaxine in treatment of severe painful peripheral diabetic neuropathy. Diabetes Care. 2000;23:1710–1.PubMedCrossRefGoogle Scholar
  25. 25.
    Bymaster FP, Dreshfield-Ahmad LJ, Threlkeld PG, et al. Comparative affinity of duloxetine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo, human serotonin receptor subtypes, and other neuronal receptors. Neuropsychopharmacology. 2001;25:871–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Gimbel JS, Richards P, Portenoy RK. Controlled release oxycodone for pain in diabetic neuropathy, A randomized controlled trial. Neurology. 2003;60:927.PubMedCrossRefGoogle Scholar
  27. 27.
    Kroemer HK, Eichelbaum M. “It's the genes, stupid”. Molecular bases and clinical consequences of genetic cytochrome P450 2D6 polymorphism. Life Sci. 1995;56:2285–98. [PubMed: 7791516].PubMedCrossRefGoogle Scholar
  28. 28.
    Binder W, Walker JS. Effect of the peripherally selective kappa-opioid agonist, asimadoline, on adjuvant arthritis. Br J Pharmacol. 1998;124:647–54.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Finnerup NB, Attal N. Pharmacotherapy of neuropathic pain: time to rewrite the rulebook? Pain Manag. 2016;6:1–3. [PubMed: 26678278].PubMedCrossRefGoogle Scholar
  30. 30.
    Finnerup NB, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14:162–73. [PubMed: 25575710].PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tesfaye S, et al. Duloxetine and pregabalin: high-dose monotherapy or their combination? The “COMBO-DN study” — a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain. 2013;154:2616–25. [PubMed: 23732189].PubMedCrossRefGoogle Scholar
  32. 32.
    Vinik AI, et al. Capsaicin 8% patch repeat treatment plus standard of care (SOC) versus SOC alone in painful diabetic peripheral neuropathy: a randomised, 52-week, open-label, safety study. BMC Neurol. 2016;16:251. [PubMed: 27919222].PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cruccu G, et al. EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol. 2007;14:952–70. [PubMed: 17718686].PubMedCrossRefGoogle Scholar
  34. 34.
    Dworkin RH, et al. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain. 2013;154:2249–61. [PubMed: 23748119].PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ziegler D, Ametov A, Barinov A, Dyck PJ, Gurieva I, Low PA, Munzel U, Yakhno N, Raz T, Novosadova M, Maus J, Samigullin R. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy TheSYDNEY2 trial. Diabetes Care. 2006;29:2365–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Agathos E, Tentolouris A, Eleftheriadou I, Katsaouni P, Nemtzas I, Petrou A, Papanikolaou C, Tentolouris N. Effect of a-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropath. J Int Med Res. 2018;46(5):1779–90.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Vinik AI, Bril V, Kempler P, Litchy WJ, Tesfaye S, Price KL, Bastyr EJ III. Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase C beta-inhibitor ruboxistaurin mesylate during 1year, randomized, placebo-controlled, Double-Blind Clinical Trial. Clin Ther., Express Track online publication. 2005; Scholar
  38. 38.
    Cameron NE, Cotter MA. Metabolic and vascular factors in the patho-genesis of diabetic neuropathy. Diabetes. 1997;46(Suppl 2):S31–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ways DK, Sheetz MJ. The rote of protein kinase C in the development of the complications of diabetes. Vitam Horm. 2000;60:149–93.PubMedCrossRefGoogle Scholar
  40. 40.
    Ozaki H, Yasuda K, Kim YS, et al. Possible role of the protein kinase C/CPI-17 pathway in the augmented contraction of human myometrium after gestation. Br J Pharmacol. 2003;140:1303–12.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Vinik A, Tesfaye S, Zhang D, Bastyr E, for the MBBQ Study Group. LY333531 treatment improves diabetic peripheral neuropathy (DPN) with symptoms. Diabetes. 2002;51(Suppl 2):A79.Google Scholar
  42. 42.
    Bril V, Vinik AI, Litchy WJ, for the MBBQ Study Group, et al. Detectable sural nerve action potential (SNAP) identifies patients with early diabetic peripheral neuropathy (DPN). Diabetes. 2002;51(Suppl 2):A197.Google Scholar
  43. 43.
    Balbi ME, Tonin FS, Mendes AM, Borba HH, Wiens A. Antioxidant effects of vitamins in type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetol Metab Syndr. 2018;10:18. Published online 2018 Mar 14. Scholar
  44. 44.
    Tutuncu NB, Bayraktar M, Varli K. Reversal of defective nerve conduction with vitamin E supplementation in type 2 diabetes – a preliminary study. Diabetes Care. 1998;21:1915–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Finnerup NB, Otto M, Mcquay HJ, Jensen TS, Sindrup SH. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain. 2005;118:289–305.PubMedCrossRefGoogle Scholar
  46. 46.
    Reichstein L, Labrenz S, Ziegler D, Martin S. Effective treatment of symptomatic diabetic polyneuropathy by high-frequency external muscle stimulation. Diabetologia. 2005;48:824–8. Scholar
  47. 47.
    Bevilacqua M, Barrella M, Toscano R et al (2004) Disturbances of vasomotion in diabetic (type 2) neuropathy: increase of vascular endothelial growth factor, elicitation of sympathetic efflux and synchronization of vascular flow (vasomotion)during frequency modulated neural stimulation (FREMS). 86th Annual Meeting of the Endocrine Society, p 321, P 2–61 (abstract).Google Scholar
  48. 48.
    Bosi E, Conti M, Vermigli C, Cazzetta G, Peretti E, Cordoni MC, Galimberti G, Scionti L. Effectiveness of frequency-modulated electromagnetic neural stimulation in the treatment of painful diabetic neuropathy. Diabetologia. 2005;48:817–23. Scholar
  49. 49.
    Clifft JK, Kasser RJ, Newton TS, Bush AJ. The effect of monochromatic infrared energy on sensation in patients with diabetic peripheral neuropathy a double-blind, placebo-controlled study. Diabetes Care. 2005;28:2896–900.PubMedCrossRefGoogle Scholar
  50. 50.
    Attal N, et al. Safety and efficacy of repeated injections of botulinum toxin a in peripheral neuropathic pain (BOTNEP): a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2016;15:555–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Shackleton T, et al. The efficacy of botulinum toxin for the treatment of trigeminal and postherpetic neuralgia: a systematic review with meta-analyses. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122:61–71. [PubMed: 27260275].PubMedCrossRefGoogle Scholar
  52. 52.
    Lakhan SE, Velasco DN, Tepper D. Botulinum toxin-a for painful diabetic neuropathy: a metaanalysis. Pain Med. 2015;16:1773–80. [PubMed: 25800040].PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sanjeev Kelkar
    • 1
  1. 1.Independent Health ResearcherPuneIndia

Personalised recommendations