Advertisement

Peer Analysis of “Sanguj” with Other Sanskrit Morphological Analyzers

  • Jatinderkumar R. SainiEmail author
  • Jaideepsinh K. Raulji
Conference paper
  • 15 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1119)

Abstract

In linguistics, morphology is a study regarding word, word formation, its analysis, and generation. A morphological analyzer is a tool to understand grammatical characteristics and constituent’s part-of-speech information. A morphological analyzer is a useful tool in many NLP implementations such as syntactic parser, spell checker, information retrieval, and machine translation. Here, 328 Sanskrit words are tested through four morphological analyzers namely—Samsaadhanii, morphological analyzers by JNU and TDIL, both of which are available online and locally developed and installed Sanguj morphological analyzer. There is a negligible divergence in the reflected results.

Keywords

Indeclinable Inflection Lemmatization Morphology Sanskrit 

References

  1. 1.
    Jha, G.N., Agrawal, M., Mishra, S.K., Mani, D., Mishra, D., Bhadra, M., Singh, S.K.: Inflectional morphology analyzer for Sanskrit. In: Sanskrit Computational Linguistics, pp. 219–238. Springer (2007)Google Scholar
  2. 2.
    Bharati, A., Kulkarni, A.P., Sheeba, V.: Building a wide coverage Sanskrit morphological analyser: a practical approach. In: The First National Symposium on Modelling and Shallow Parsing of Indian Languages, IIT-BombayGoogle Scholar
  3. 3.
    Raulji, J.K., Saini, J.R.: Sanskrit lemmatizer for improvisation of morphological analyzer. J. Stat. Manag. Syst. (Taylor and Francis) 22(4), 613–625 (2019)Google Scholar
  4. 4.
    Srivastava, P., Chauhan, K., Aggarwal, D., Shukla, A., Dhar, J., Jain V.P.: Deep learning based unsupervised POS tagging for Sanskrit. In: Algorithms, Computing and Artificial Intelligence, p. 56. ACM (2018)Google Scholar
  5. 5.
    Soman, K.P., Poornachandran, P.: A deep learning based part-of-speech (POS) tagger for Sanskrit language by embedding character level features. In: Forum for Information Retrieval Evaluation, pp. 56–60. ACM (2018)Google Scholar
  6. 6.
    Goyal, P., Arora, V., Behera, L.: Analysis of Sanskrit text: parsing and semantic relations. In Sanskrit Computational Linguistics, pp. 200–218. Springer (2007)Google Scholar
  7. 7.
    Hellwig, O.: Sanskrit tagger: a stochastic lexical and POS tagger for Sanskrit. In Sanskrit Computational Linguistics, pp. 266–277. Springer (2007)Google Scholar
  8. 8.
    Tapaswi, N., Jain, S.: Treebank based deep grammar acquisition and part-of-speech tagging for Sanskrit sentences. In CSI Sixth International Conference on Software Engineering (CONSEG), pp. 1–4. IEEE (2012)Google Scholar
  9. 9.
    Murali, N., Ramasree, R.J., Acharyulu, K.V.R.K.: Avyaya analyzer: analysis of indeclinables using finite state transducers. Int. J. Comput. Appl. 38(6), 7–11 (2012)Google Scholar
  10. 10.
    Samsaadhanii—A Sanskrit Computational Toolkit (Morphological Analyzer). http://scl.Samsaadhanii.in/scl/. Accessed May 2019
  11. 11.
    Sanskrit Morphological Analyzer, Computational Linguistics R&D, School of Sanskrit and Indic studies, Jawaharlal Nehru University. http://Sanskrit.jnu.ac.in/morph/analyze.jsp. Accessed May 2019
  12. 12.
    Morph–Analyzer, Technology for Development of Indian Languages (TDIL). http://tdil-dc.in/san/morph/index_dit.html. Accessed May 2019
  13. 13.
    Raulji, J.K., Saini, J.R.: Bilingual dictionary for Sanskrit–Gujarati MT Implementation. In: ICT for Sustainable Development. Springer (in press)Google Scholar
  14. 14.
    Raulji, J.K., Saini, J.R.: Generating stopword list for Sanskrit language. In: Advance Computing, pp. 799–802. IEEE (2017)Google Scholar
  15. 15.
    Raulji, J.K., Saini, J.R.: A rule based architecture for Sanskrit to Gujarati machine translation system. In: Emerging Trends in Engineering, Science and Technology. IEEE (2018) (in press)Google Scholar
  16. 16.
    Raulji, J.K., Saini, J.R.: Sanskrit stopword analysis through morphological analyzer and its Gujarati equivalent for MT system. In: ICT for Sustainable Development. Springer (2019) (in press)Google Scholar
  17. 17.
    Raulji, J.K., Saini, J.R.: Sanskrit-Gujarati constituency mapper for machine translation system. In: IEEE Bombay Section Signature Conference (IBSSC-2019). IEEE (2019) (in press)Google Scholar
  18. 18.
    Saini, J.R., Desai, A.A.: Analysis of classifications of unsolicited bulk emails. Int. J. Comput Inf Eng. 4(2), 91–95 (2010)Google Scholar
  19. 19.
    Chandrakar, O.S., Saini, J.R.: Empirical study to suggest optimal classification techniques for given dataset. In: Computational Intelligence and Communication Technology, pp. 30–35. IEEE Computer Society (2015)Google Scholar
  20. 20.
    Kaur, J., Saini, J.R. Punjabi poetry classification: the test of 10 machine learning algorithms. In: Machine Learning and Computing, pp. 01–05. ACM (2017)Google Scholar
  21. 21.
    Chandrakar, O.S., Saini, J.R., Bhatti, D.G.: Novel semantic discretization technique for type-2 diabetes classification model. In: Innovations in Computer Science and Engineering. Lecture Notes in Networks and Systems, vol. 74, pp. 135–141. Springer (2019)Google Scholar
  22. 22.
    Rakholia, R.M., Saini, J.R.: Classification of Gujarati documents using Naïve Bayes classifier. Indian J. Sci. Technol. 10(5), 1–9 (2017)CrossRefGoogle Scholar
  23. 23.
    Das, H., Naik, B., Behera, H.S.: Classification of diabetes mellitus disease (DMD): a data mining (DM) approach. In: Progress in Computing, Analytics and Networking, pp. 539–549. Springer (2018)Google Scholar
  24. 24.
    Sahani, R., Rout, C., Badajena, J.C., Jena, A.K., Das, H.: Classification of intrusion detection using data mining techniques. In: Progress in Computing, Analytics and Networking, pp. 753–764. Springer (2018)Google Scholar
  25. 25.
    Das, H., Jena, A.K., Nayak, J., Naik, B., Behera, H.S.: A novel PSO based back propagation learning-MLP (PSO-BP-MLP) for classification. In: Computational Intelligence in Data Mining, vol. 2, pp. 461–471. Springer (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Jatinderkumar R. Saini
    • 1
    • 2
    Email author
  • Jaideepsinh K. Raulji
    • 3
    • 2
  1. 1.Symbiosis Institute of Computer Studies and Research (SICSR), Symbiosis International (Deemed University) (SIU)PuneIndia
  2. 2.Dr. Babasaheb Ambedkar Open UniversityAhmedabadIndia
  3. 3.Ahmedabad UniversityAhmedabadIndia

Personalised recommendations