Advertisement

An Approach to Extract Low-Grade Tumor from Brain MRI Slice Using Soft-Computing Scheme

  • Sangeetha Francelin Vinnarasi
  • J. T. Anita Rose
  • Jesline
  • V. RajinikanthEmail author
Conference paper
  • 6 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1119)

Abstract

The clinical-level assessment of brain Magnetic Resonance Imaging (MRI) varies from the visual/physical examination by a doctor to the Computer-Assisted Evaluation (CAE). Owing to its impact, a number of CAE techniques are planned to assess the brain MRI registered using different modalities. The plan of this research is to build a CAE tool by integrating the thresholding and segmentation techniques, which can effectively work with a range of MRI modalities. This work employs Brain Storm Optimization Algorithm (BSOA) and Otsu’s thresholding and Watershed Segmentation (WS) to extract the tumor section from the considered two-dimensional (2D) MRI slice. The proposed CAE system is tested and validated using the benchmark MRI slices of BRATS2015 database. The examination considered the low-grade tumors of the flair, T1C and T2 modality registered pictures, and its outcome is confirmed with a qualified scrutiny with the Ground Truth (GT) given by an expert. The result of this work substantiates that this CAE tool offered superior values of Image Quality Parameters (IQPs) during the low-grade brain tumor evaluation, and hence, the developed CAE can be considered to inspect the scientific grade MRI slices.

Keywords

Brain MRI Otsu Brain storm optimization algorithm Watershed segmentation Validation 

References

  1. 1.
    Rajinikanth, V., Satapathy, S.C., Fernandes, S.L., Nachiappan, S.: Entropy based Segmentation of Tumor from Brain MR Images–A study with Teaching Learning Based Optimization. Pattern Recognit. Lett. 94, 87–94 (2016).  https://doi.org/10.1016/j.patrec.2017.05.028
  2. 2.
    Fernandes, S.L., Rajinikanth, V., Kadry, S.: A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consum. Electron. Mag. 8(5), 31–36 (2019).  https://doi.org/10.1109/MCE.2019.2923926CrossRefGoogle Scholar
  3. 3.
    Nair. M.V. et al.: Investigation of breast melanoma using hybrid image-processing-tool. In: International Conference on Recent Trends in Advance Computing (ICRTAC), IEEE, pp. 174–179 (2018).  https://doi.org/10.1109/ICRTAC.2018.8679193
  4. 4.
    Rajinikanth, V., Dey, N., Kumar, R., Panneerselvam, J., Raja, N.S.M.: Fetal head periphery extraction from ultrasound image using jaya algorithm and Chan-Vese segmentation. Procedia Comput. Sci. 152, 66–73 (2019).  https://doi.org/10.1016/j.procs.2019.05.028CrossRefGoogle Scholar
  5. 5.
    Satapathy, S.C., Rajinikanth, V.: Jaya algorithm guided procedure to segment tumor from brain MRI. J. Optim. 2018, 12 (2018).  https://doi.org/10.1155/2018/3738049CrossRefzbMATHGoogle Scholar
  6. 6.
    Rajinikanth, V., Satapathy, S.C.: Segmentation of ischemic stroke lesion in brain MRI based on social group optimization and Fuzzy-Tsallis entropy. Arabian J. Sci. Eng. 43(8), 4365–4378 (2018).  https://doi.org/10.1007/s13369-017-3053-6CrossRefGoogle Scholar
  7. 7.
    Jahmunah, V., et al.: Automated detection of schizophrenia using nonlinear signal processing methods. Artif. Intell. Med. 100, 101698 (2019).  https://doi.org/10.1016/j.artmed.2019.07.006CrossRefGoogle Scholar
  8. 8.
    Acharya, U.R., et al.: Automated detection of Alzheimer’s disease using brain MRI images– a study with various feature extraction techniques. J. Med. Syst. 43, 302 (2019).  https://doi.org/10.1007/s10916-019-1428-9CrossRefGoogle Scholar
  9. 9.
    Dey, N., et al.: Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of Flair/diffusion-weighted modality. Biocybern. Biomed. Eng. 39(3), 843–856 (2019).  https://doi.org/10.1016/j.bbe.2019.07.005CrossRefGoogle Scholar
  10. 10.
    Fernandes, S.L. et al.: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput. Appl. 1–12 (2019).  https://doi.org/10.1007/s00521-019-04369-5
  11. 11.
    Menze, et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  12. 12.
    Brain Tumor Database (BraTS-MICCAI), http://hal.inria.fr/hal-00935640
  13. 13.
    Satapathy, S.C., Raja, N.S.M., Rajinikanth, V., Ashour, A.S. Dey, N.: Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput. Appl. (2016).  https://doi.org/10.1007/s00521-016-2645-5
  14. 14.
    Raja, NSM., Rajinikanth, V., Latha, K.: Otsu based optimal multilevel image thresholding using firefly algorithm. Model Simul. Eng. 2014 (2014). Article ID 794574:17Google Scholar
  15. 15.
    Shi, Y.: Brain storm optimization algorithm. Lect. Notes Comput. Sci. 6728, 303–309 (2011).  https://doi.org/10.1007/978-3-642-21515-5_36CrossRefGoogle Scholar
  16. 16.
    Cheng, S., Shi, Y., Qin, Q., Zhang, Q., Bai, R.: Population diversity maintenance in brain storm optimization algorithm. J Artif Intell Soft Comput Res 4(2), 83–97 (2014)CrossRefGoogle Scholar
  17. 17.
    Cheng, S., Qin, Q., Chen, J., Shi, Y.: Brain storm optimization algorithm: a review. Artif. Intell. Rev. 46(4), 445–458 (2016)CrossRefGoogle Scholar
  18. 18.
    Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inf. 41, 187–228 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Shanthakumar, P., Kumar, P.G.: Computer aided brain tumor detection system using watershed segmentation techniques. Int. J. Imaging Syst. Technol. 25(4), 297–301 (2015).  https://doi.org/10.1002/ima.22147CrossRefGoogle Scholar
  20. 20.
    Raja, N.S.M. et al.: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient Intell. Hum. Comput. 1–12 (2018).  https://doi.org/10.1007/s12652-018-0854-8
  21. 21.
    Dey, N., et al.: Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10(2), 51 (2018).  https://doi.org/10.3390/sym10020051CrossRefzbMATHGoogle Scholar
  22. 22.
    Rajinikanth, V., Dey, N., Satapathy, S.C., Kamalanand, K.: Inspection of crop-weed image database using kapur’s entropy and spider monkey optimization. Adv. Intell. Syst. Comput. 1048 (2019).  https://doi.org/10.1007/978-981-15-0035-0_32
  23. 23.
    Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29, 273–285 (1985)Google Scholar
  24. 24.
    Raja, N.S.M., et al.: Segmentation of breast thermal images using Kapur’s entropy and hidden Markov random field. J. Med. Imaging Health Inf. 7(8), 1825–1829 (2017).  https://doi.org/10.1166/jmihi.2017.2267CrossRefGoogle Scholar
  25. 25.
    Das, H., Naik, B., Behera, H.S.: Classification of diabetes mellitus disease (dmd): a data mining (DM) Approach. Adv. Intell. Syst. Comput. 710, 539–549 (2018).  https://doi.org/10.1007/978-981-10-7871-2_52CrossRefGoogle Scholar
  26. 26.
    Sahani, R., et al.: Classification of intrusion detection using data mining techniques. Adv. Intell. Syst. Comput. 710, 753–764 (2018).  https://doi.org/10.1007/978-981-10-7871-2_72CrossRefGoogle Scholar
  27. 27.
    Pradhan, C., Das, H., Naik, B., Dey, N.: Handbook of Research on Information Security in Biomedical Signal Processing Hershey. IGI Global, PA (2018)CrossRefGoogle Scholar
  28. 28.
    Sahoo, A.K., Mallik, S., Pradhan, C., Mishra, B.S.P., Barik, R.K., Das, H.: Intelligence-based health recommendation system using big data analytics. In: Big Data Analytics for Intelligent Healthcare Management, pp. 227–246 (2019).  https://doi.org/10.1016/B978-0-12-818146-1.00009-X
  29. 29.
    Dey, N., Das, H., Naik, B., Behera, H.S. (eds.): Big Data Analytics for Intelligent Healthcare Management. Academic (2019)Google Scholar
  30. 30.
    Chandrakar, P.: A secure remote user authentication protocol for healthcare monitoring using wireless medical sensor networks. Int. J. Ambient Comput. Intell. (IJACI) 10(1), 96–116 (2019).  https://doi.org/10.4018/IJACI.2019010106CrossRefGoogle Scholar
  31. 31.
    Bhattacharya, H., Chattopadhyay, S., Chattopadhyay, M., Banerjee, A.: Storage and bandwidth optimized reliable distributed data allocation algorithm. J. Ambient Comput. Intell. (IJACI) 10(1), 78–95 (2019).  https://doi.org/10.4018/IJACI.2019010105CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sangeetha Francelin Vinnarasi
    • 1
  • J. T. Anita Rose
    • 1
  • Jesline
    • 1
  • V. Rajinikanth
    • 2
    Email author
  1. 1.Department of Computer Science EngineeringSt. Joseph’s College of EngineeringChennaiIndia
  2. 2.Department of Electronics and InstrumentationSt. Joseph’s College of EngineeringChennaiIndia

Personalised recommendations