Skip to main content

Animal Models of Congenital Gastrointestinal Maladies

  • Chapter
  • First Online:
Animal Models of Human Birth Defects

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1236))

Abstract

The gastrointestinal (GI) tract consists of a remarkable series of organs that spatially and temporally coordinate the vital process of digestion to extract key nutrients required to sustain our day-to-day functions. During development, it undergoes complex and highly specialized morphogenetic events to form functionally distinct organs. Its failure to develop properly leads to serious congenital diseases, which if left untreated are particularly devastating and often result in premature death. These GI diseases have been estimated to impact approximately 8–16 of every 10,000 newborns [1, 2]. Importantly, the clinical manifestations of these diseases are severe, with untreated cases having high mortality rates. While some disorders, such as Hirschsprung’s disease, can be treated effectively with surgery, the efficacy of this management strategy is far lower for other diseases, such as necrotizing enterocolitis. Moreover, children often face complications from these surgical procedures, leading to secondary ailments. Consequently, a better understanding of gastrointestinal development is fundamental to the treatment and prevention of congenital GI maladies. This chapter will explore some of the most prevalent and biologically complex congenital diseases of the GI system, with emphasis on animal models that both elucidate their underlying causes and lay the essential groundwork for the advancement of translational medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asindi AA, Al-Daama SA, Zayed MS, Fatinni YA. Congenital malformation of the gastrointestinal tract in Aseer region, Saudi Arabia. Saudi Med J. 2002;23(9):1078–82.

    PubMed  Google Scholar 

  2. Public Health Infobase: Congenital Anomalies in Canada [Internet]. Public Health Infobase. 2017. https://infobase.phac-aspc.gc.ca/congenital-anomalies/data-tool/.

  3. Oezcelik A, DeMeester SR. General anatomy of the esophagus. Thorac Surg Clin. 2011;21(2):289–97.

    Article  PubMed  Google Scholar 

  4. O’Connor A, O’Morain C. Digestive function of the stomach. Dig Dis. 2014;32(3):186–91.

    Article  PubMed  Google Scholar 

  5. Helander HF, Fändriks L. Surface area of the digestive tract—revisited. 2014;49(6):681–9. https://doi.org/103109/003655212014898326.

  6. Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med. 2017;49(5):e338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sandle G. Salt and water absorption in the human colon: a modern appraisal. Gut. 1998;43(2):294–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009;25:221–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spence JR, Lauf R, Shroyer NF. Vertebrate intestinal endoderm development. Dev Dyn. 2011;240(3):501–20.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chin AM, Hill DR, Aurora M, Spence JR. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin Cell Dev Biol. 2017;66:81–93.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim TH, Shivdasani RA. Stomach development, stem cells and disease. Development. 2016;143(4):554–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raghoebir L, Bakker ER, Mills JC, Swagemakers S, Kempen M, Munck A, et al. SOX2 redirects the developmental fate of the intestinal epithelium toward a premature gastric phenotype. J Mol Cell Biol. 2012;4(6):377–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dufort D, Schwartz L, Harpal K, Rossant J. The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development. 1998;125(16):3015–25.

    CAS  PubMed  Google Scholar 

  14. Tourneur E, Chassin C. Neonatal immune adaptation of the gut and its role during infections. Clin Dev Immunol. 2013;2013:270301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nagy N, Goldstein AM. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin Cell Dev Biol. 2017;66:94–106.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Svihus B. The gizzard: function, influence of diet structure and effects on nutrient availability. Worlds Poult Sci J. 2011;67(2):207–23.

    Article  Google Scholar 

  17. Schmidt GH, Winton DJ, Ponder BA. Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. Development. 1988;103(4):785–90.

    CAS  PubMed  Google Scholar 

  18. Calvert R, Pothier P. Migration of fetal intestinal intervillous cells in neonatal mice. Anat Rec. 1990;227(2):199–206.

    Article  CAS  PubMed  Google Scholar 

  19. Kuo B, Urma D. Esophagus—anatomy and development. GI Motility online. 2006.

    Google Scholar 

  20. Que J. The initial establishment and epithelial morphogenesis of the esophagus: a new model of tracheal-esophageal separation and transition of simple columnar into stratified squamous epithelium in the developing esophagus. Wiley Interdiscip Rev Dev Biol. 2015;4(4):419–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Esophageal Atresia and/or Tracheoesophageal Fistula—NORD (National Organization for Rare Disorders). 2019. https://rarediseases.org/rare-diseases/esophageal-atresia-andor-tracheoesophageal-fistula/.

  22. Ioannides AS, Massa V, Ferraro E, Cecconi F, Spitz L, Henderson DJ, Copp AJ. Foregut separation and tracheo-oesophageal malformations: the role of tracheal outgrowth, dorso-ventral patterning and programmed cell death. Dev Biol. 2010;337(2):351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Que J, Okubo T, Goldenring JR, Nam K-T, Kurotani R, Morrisey EE, Taranova O, Pevny LH, Hogan BLM. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development. 2007;134(13):2521–31.

    Article  CAS  PubMed  Google Scholar 

  24. Que J, Choi M, Ziel JW, Klingensmith J, Hogan BL. Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation. 2006;74(7):422–37.

    Article  CAS  PubMed  Google Scholar 

  25. Williamson KA, Hever AM, Rainger J, Rogers RC, Magee A, Fiedler Z, et al. Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum Mol Genet. 2006;15(9):1413–22.

    Article  CAS  PubMed  Google Scholar 

  26. Liu K, Lin B, Zhao M, Yang X, Chen M, Gao A, Liu F, Que J, Lan X. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal. 2019;25(5):1264–71.

    Article  CAS  Google Scholar 

  27. Minoo P, Su G, Drum H, Bringas P, Kimura S. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(-/-) mouse embryos. Dev Biol. 2019;209(1):60–71.

    Article  Google Scholar 

  28. Mahlapuu M Enerbäck S, Carlsson P. Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. Development. 2019;12.

    Google Scholar 

  29. Stankiewicz P, Sen P, Bhatt SS, Storer M, Xia Z, Bejjani BA, et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet. 2009;84(6):780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim BM, Buchner G, Miletich I, Sharpe PT, Shivdasani RA. The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev Cell. 2005;8(4):611–22.

    Article  CAS  PubMed  Google Scholar 

  31. Woo J, Miletich I, Kim BM, Sharpe PT, Shivdasani RA. Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation. PLoS One. 2019;6(7):e22493.

    Article  CAS  Google Scholar 

  32. Harris-Johnson KS, Domyan ET, Vezina CM, Sun X. beta-Catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci U S A. 2009;106(38):16287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey EE. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell. 2019;17(2):290–8.

    Article  CAS  Google Scholar 

  34. Li Y, Gordon J, Manley NR, Litingtung Y, Chiang C. Bmp4 is required for tracheal formation: a novel mouse model for tracheal agenesis. Dev Biol. 2008;322(1):145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez P, Da Silva S, Oxburgh L, Wang F, Hogan BL, Que J. BMP signaling in the development of the mouse esophagus and forestomach. Development. 2010;137(24):4171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Litingtung Y, Ten Dijke P, Chiang C. Aberrant Bmp signaling and notochord delamination in the pathogenesis of esophageal atresia. Dev Dyn. 2007;236(3):746–54.

    Article  CAS  PubMed  Google Scholar 

  37. Domyan ET, Ferretti E, Throckmorton K, Mishina Y, Nicolis SK, Sun X. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development. 2019;1385(5):971–81.

    Article  CAS  Google Scholar 

  38. Marsh AJ, et al. Interstitial deletion of chromosome 17 (del(17)(q22q23.3)) confirms a link with oesophageal atresia. J Med Genet. 2000;37(9):701–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet. 2019;20(1):54–7.

    Article  CAS  Google Scholar 

  40. Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet. 1998;20(1):54–7.

    Article  CAS  PubMed  Google Scholar 

  41. Spilde T, Bhatia A, Ostlie D, Marosky J, Holcomb G III, Snyder C, et al. A role for sonic hedgehog signaling in the pathogenesis of human tracheoesophageal fistula. J Pediatr Surg. 2003;38(3):465–8.

    Article  PubMed  Google Scholar 

  42. Rankin SA, Han L, McCracken KW, Kenny AP, Anglin CT, Grigg EA, Crawford CM, Wells JM, Shannon JM, Zorn AM. A retinoic acid-hedgehog cascade coordinates mesoderm-inducing signals and endoderm competence during lung specification. Cell Rep. 2016;16(1):66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo J, Sucov HM, Bader JA, Evans RM, Giguère V. Compound mutants for retinoic acid receptor (RAR) beta and RAR alpha 1 reveal developmental functions for multiple RAR beta isoforms. Mech Dev. 2019;55(1):33–44.

    Article  Google Scholar 

  44. Trisno SL, Philo KED, McCracken KW, Catá EM, Ruiz-Torres S, Rankin SA, et al. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell. 2018;23(4):501–15.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Glenn IC, Bruns NE, Schomisch SJ, Ponsky TA. Creation of an esophageal atresia animal model using a bifurcated esophagus to maintain digestive tract continuity. J Laparoendosc Adv Surg Tech A. 2017;27(10):1079–84.

    Article  PubMed  Google Scholar 

  46. McCracken KW, Wells JM. Mechanisms of embryonic stomach development. Semin Cell Dev Biol. 2017;66:36–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han ME, Oh SO. Gastric stem cells and gastric cancer stem cells. Anat Cell Biol. 2013;46(1):8–18.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chaudhry SR, Bhimji SS. Anatomy, abdomen and pelvis, stomach. StatPearls Publishing; 2018.

    Google Scholar 

  49. Soybel DI. Anatomy and physiology of the stomach. Surg Clin North Am. 2005;85(5):875–94.

    Article  PubMed  Google Scholar 

  50. Lloyd KC. Gut hormones in gastric function. Baillieres Clin Endocrinol Metab. 1994;8(1):111–36.

    Article  CAS  PubMed  Google Scholar 

  51. Schubert ML. Functional anatomy and physiology of gastric secretion. Curr Opin Gastroenterol. 2015;31(6):479–85.

    Article  PubMed  Google Scholar 

  52. To T, Wajja A, Wales PW, Langer JC. Population demographic indicators associated with incidence of pyloric stenosis. Arch Pediatr Adolesc Med. 2005;159(6):520–5.

    Article  PubMed  Google Scholar 

  53. Sommerfield T, Chalmers J, Youngson G, Heeley C, Fleming M, Thomson G. The changing epidemiology of infantile hypertrophic pyloric stenosis in Scotland. Arch Dis Child. 2008;93(12):1007–11.

    Article  CAS  PubMed  Google Scholar 

  54. Krogh C, Fischer TK, Skotte L, Biggar RJ, Oyen N, Skytthe A, et al. Familial aggregation and heritability of pyloric stenosis. JAMA. 2010;303(23):2393–9.

    Article  CAS  PubMed  Google Scholar 

  55. Aboagye J, Goldstein SD, Salazar JH, Papandria D, Okoye MT, Al-Omar K, et al. Age at presentation of common pediatric surgical conditions: reexamining dogma. J Pediatr Surg. 2014;49(6):995–9.

    Article  PubMed  Google Scholar 

  56. Peters B, Oomen MW, Bakx R, Benninga MA. Advances in infantile hypertrophic pyloric stenosis. Expert Rev Gastroenterol Hepatol. 2014;8(5):533–41.

    Article  CAS  PubMed  Google Scholar 

  57. Schechter R, Torfs CP, Bateson TF. The epidemiology of infantile hypertrophic pyloric stenosis. Paediatr Perinat Epidemiol. 1997;11(4):407–27.

    Article  CAS  PubMed  Google Scholar 

  58. Bode VC, McDonald JD, Guenet JL, Simon D. hph-1: a mouse mutant with hereditary hyperphenylalaninemia induced by ethylnitrosourea mutagenesis. Genetics. 1988;118(2):299–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Abel RM, Dore CJ, Bishop AE, Facer P, Polak JM, Spitz L. A histological study of the hph-1 mouse mutant: an animal model of phenylketonuria and infantile hypertrophic pyloric stenosis. Anat Histol Embryol. 2004;33(3):125–30.

    Article  CAS  PubMed  Google Scholar 

  60. Gutlich M, Ziegler I, Witter K, Hemmens B, Hultner L, McDonald JD, et al. Molecular characterization of HPH-1: a mouse mutant deficient in GTP cyclohydrolase I activity. Biochem Biophys Res Commun. 1994;203(3):1675–81.

    Article  CAS  PubMed  Google Scholar 

  61. Shimoji M, Hirayama K, Hyland K, Kapatos G. GTP cyclohydrolase I gene expression in the brains of male and female hph-1 mice. J Neurochem. 1999;72(2):757–64.

    Article  CAS  PubMed  Google Scholar 

  62. Welsh C, Shifrin Y, Pan J, Belik J. Infantile hypertrophic pyloric stenosis (IHPS): a study of its pathophysiology utilizing the newborn hph-1 mouse model of the disease. Am J Physiol Gastrointest Liver Physiol. 2014;307(12):G1198–206.

    Article  CAS  PubMed  Google Scholar 

  63. Belik J, Shifrin Y, Arning E, Bottiglieri T, Pan J, Daigneault MC, et al. Intestinal microbiota as a tetrahydrobiopterin exogenous source in hph-1 mice. Sci Rep. 2017;7:44161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993;75(7):1273–86.

    Article  CAS  PubMed  Google Scholar 

  65. Everett KV, Chioza BA, Georgoula C, Reece A, Capon F, Parker KA, et al. Genome-wide high-density SNP-based linkage analysis of infantile hypertrophic pyloric stenosis identifies loci on chromosomes 11q14-q22 and Xq23. Am J Hum Genet. 2008;82(3):756–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Udager AM, Prakash A, Saenz DA, Schinke M, Moriguchi T, Jay PY, et al. Proper development of the outer longitudinal smooth muscle of the mouse pylorus requires Nkx2-5 and Gata3. Gastroenterology. 2014;146(1):157–65.e10.

    Article  CAS  PubMed  Google Scholar 

  67. Feenstra B, Geller F, Krogh C, Hollegaard MV, Gørtz S, Boyd HA, et al. Common variants near MBNL1 and NKX2-5 are associated with infantile hypertrophic pyloric stenosis. Nat Genet. 2012;44(3):334–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Feenstra B, Geller F, Carstensen L, Romitti PA, Korberg IB, Bedell B, et al. Plasma lipids, genetic variants near APOA1, and the risk of infantile hypertrophic pyloric stenosis. JAMA. 2013;310(7):714–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364(3):255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jilling T, Simon D, Lu J, Meng FJ, Li D, Schy R, et al. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol. 2006;177(5):3273–82.

    Article  CAS  PubMed  Google Scholar 

  71. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.

    Article  PubMed  CAS  Google Scholar 

  72. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141–53.

    Article  CAS  PubMed  Google Scholar 

  73. Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12(5):319–30.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chu SH, Walker WA. Developmental changes in the activities of sialyl- and fucosyltransferases in rat small intestine. Biochim Biophys Acta. 1986;883(3):496–500.

    Article  CAS  PubMed  Google Scholar 

  75. Bergström A, Kristensen MB, Bahl MI, Metzdorff SB, Fink LN, Frøkiaer H, et al. Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life. BMC Res Notes. 2012;5:402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Clevers HC, Bevins CL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol. 2013;75:289–311.

    Article  CAS  PubMed  Google Scholar 

  77. Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73(6):1131S–41S.

    Article  CAS  PubMed  Google Scholar 

  78. Bry L, Falk P, Huttner K, Ouellette A, Midtvedt T, Gordon JI. Paneth cell differentiation in the developing intestine of normal and transgenic mice. Proc Natl Acad Sci U S A. 1994;91(22):10335–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin PW, Stoll BJ. Necrotising enterocolitis. Lancet. 2006;368(9543):1271–83.

    Article  PubMed  Google Scholar 

  80. Uauy RD, Fanaroff AA, Korones SB, Phillips EA, Phillips JB, Wright LL. Necrotizing enterocolitis in very low birth weight infants: biodemographic and clinical correlates. National Institute of Child Health and Human Development Neonatal Research Network. J Pediatr. 1991;119(4):630–8.

    Article  CAS  PubMed  Google Scholar 

  81. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314(10):1039–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Papillon S, Castle SL, Gayer CP, Ford HR. Necrotizing enterocolitis: contemporary management and outcomes. Adv Pediatr. 2013;60(1):263–79.

    Article  PubMed  Google Scholar 

  83. Leaphart CL, Cavallo J, Gribar SC, Cetin S, Li J, Branca MF, et al. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol. 2007;179(7):4808–20.

    Article  CAS  PubMed  Google Scholar 

  84. White JR, Gong H, Pope B, Schlievert P, McElroy SJ. Paneth-cell-disruption-induced necrotizing enterocolitis in mice requires live bacteria and occurs independently of TLR4 signaling. Dis Model Mech. 2017;10(6):727–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu RY, Li B, Koike Y, Määttänen P, Miyake H, Cadete M, et al. Human milk oligosaccharides increase mucin expression in experimental necrotizing enterocolitis. Mol Nutr Food Res. 2019;63(3):e1800658.

    PubMed  Google Scholar 

  86. Sturm R, Staneck JL, Stauffer LR, Neblett WW. Neonatal necrotizing enterocolitis associated with penicillin-resistant, toxigenic Clostridium butyricum. Pediatrics. 1980;66(6):928–31.

    CAS  PubMed  Google Scholar 

  87. Coggins SA, Wynn JL, Weitkamp JH. Infectious causes of necrotizing enterocolitis. Clin Perinatol. 2015;42(1):133–54, ix.

    Article  PubMed  Google Scholar 

  88. Tanner SM, Berryhill TF, Ellenburg JL, Jilling T, Cleveland DS, Lorenz RG, et al. Pathogenesis of necrotizing enterocolitis: modeling the innate immune response. Am J Pathol. 2015;185(1):4–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sodhi C, Richardson W, Gribar S, Hackam DJ. The development of animal models for the study of necrotizing enterocolitis. Dis Model Mech. 2008;1(2-3):94–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Barlow B, Santulli TV, Heird WC, Pitt J, Blanc WA, Schullinger JN. An experimental study of acute neonatal enterocolitis—the importance of breast milk. J Pediatr Surg. 1974;9(5):587–95.

    Article  CAS  PubMed  Google Scholar 

  91. Barlow B, Santulli TV. Importance of multiple episodes of hypoxia or cold stress on the development of enterocolitis in an animal model. Surgery. 1975;77(5):687–90.

    CAS  PubMed  Google Scholar 

  92. Caplan MS, Hedlund E, Adler L, Hsueh W. Role of asphyxia and feeding in a neonatal rat model of necrotizing enterocolitis. Pediatr Pathol. 1994;14(6):1017–28.

    Article  CAS  PubMed  Google Scholar 

  93. Gonzalez-Crussi F, Hsueh W. Experimental model of ischemic bowel necrosis. The role of platelet-activating factor and endotoxin. Am J Pathol. 1983;112(1):127–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Krasna IH, Howell C, Vega A, Ziegler M, Koop CE. A mouse model for the study of necrotizing enterocolitis. J Pediatr Surg. 1986;21(1):26–9.

    Article  CAS  PubMed  Google Scholar 

  95. Ginzel M, Feng X, Kuebler JF, Klemann C, Yu Y, von Wasielewski R, et al. Dextran sodium sulfate (DSS) induces necrotizing enterocolitis-like lesions in neonatal mice. PLoS One. 2017;12(8):e0182732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. MohanKumar K, Kaza N, Jagadeeswaran R, Garzon SA, Bansal A, Kurundkar AR, et al. Gut mucosal injury in neonates is marked by macrophage infiltration in contrast to pleomorphic infiltrates in adult: evidence from an animal model. Am J Physiol Gastrointest Liver Physiol. 2012;303(1):G93–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sawada M, Takahashi K, Sawada S, Midorikawa O. Selective killing of Paneth cells by intravenous administration of dithizone in rats. Int J Exp Pathol. 1991;72(4):407–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang C, Sherman MP, Prince LS, Bader D, Weitkamp JH, Slaughter JC, et al. Paneth cell ablation in the presence of Klebsiella pneumoniae induces necrotizing enterocolitis (NEC)-like injury in the small intestine of immature mice. Dis Model Mech. 2012;5(4):522–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bozeman AP, Dassinger MS, Birusingh RJ, Burford JM, Smith SD. An animal model of necrotizing enterocolitis (NEC) in preterm rabbits. Fetal Pediatr Pathol. 2013;32(2):113–22.

    Article  PubMed  Google Scholar 

  100. Waligora-Dupriet AJ, Dugay A, Auzeil N, Huerre M, Butel MJ. Evidence for clostridial implication in necrotizing enterocolitis through bacterial fermentation in a gnotobiotic quail model. Pediatr Res. 2005;58(4):629–35.

    Article  CAS  PubMed  Google Scholar 

  101. Cassutto BH, Misra HP, Pfeiffer CJ. Intestinal post-ischemic reperfusion injury: studies with neonatal necrotizing enterocolitis. Acta Physiol Hung. 1989;73(2–3):363–9.

    CAS  PubMed  Google Scholar 

  102. Waligora-Dupriet AJ, Dugay A, Auzeil N, Nicolis I, Rabot S, Huerre MR, et al. Short-chain fatty acids and polyamines in the pathogenesis of necrotizing enterocolitis: kinetics aspects in gnotobiotic quails. Anaerobe. 2009;15(4):138–44.

    Article  CAS  PubMed  Google Scholar 

  103. Butel MJ, Roland N, Hibert A, Popot F, Favre A, Tessedre AC, et al. Clostridial pathogenicity in experimental necrotising enterocolitis in gnotobiotic quails and protective role of bifidobacteria. J Med Microbiol. 1998;47(5):391–9.

    Article  CAS  PubMed  Google Scholar 

  104. Namachivayam K, Blanco CL, MohanKumar K, Jagadeeswaran R, Vasquez M, McGill-Vargas L, et al. Smad7 inhibits autocrine expression of TGF-β2 in intestinal epithelial cells in baboon necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2013;304(2):G167–80.

    Article  CAS  PubMed  Google Scholar 

  105. Maheshwari A, Kelly DR, Nicola T, Ambalavanan N, Jain SK, Murphy-Ullrich J, et al. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology. 2011;140(1):242–53.

    Article  CAS  PubMed  Google Scholar 

  106. Scheer N, Roland Wolf C. Xenobiotic receptor humanized mice and their utility. Drug Metab Rev. 2013;45(1):110–21.

    Article  CAS  PubMed  Google Scholar 

  107. Hajjar AM, Ernst RK, Fortuno ES, Brasfield AS, Yam CS, Newlon LA, et al. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica. PLoS Pathog. 2012;8(10):e1002963.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Azzouz LL, Sharma S. Physiology, large intestine. StatPearls Publishing; 2018.

    Google Scholar 

  109. Kenny SE, Tam PK, Garcia-Barcelo M. Hirschsprung’s disease. Semin Pediatr Surg. 2010;19(3):194–200.

    Article  PubMed  Google Scholar 

  110. Heuckeroth RO. Hirschsprung disease—integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol. 2018;15(3):152–67.

    Article  PubMed  Google Scholar 

  111. Vieten D, Spicer R. Enterocolitis complicating Hirschsprung’s disease. Semin Pediatr Surg. 2004;13(4):263–72.

    Article  PubMed  Google Scholar 

  112. Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: old and new players. Dev Biol. 2016;417(2):139–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ibanez CF. Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb Perspect Biol. 2013;5(2).

    Google Scholar 

  114. Burzynski GM, Nolte IM, Bronda A, Bos KK, Osinga J, Twigt B, et al. Identifying candidate Hirschsprung disease-associated RET variants. Am J Hum Genet. 2005;76(5):850–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. de Graaff E, Srinivas S, Kilkenny C, D’Agati V, Mankoo BS, Costantini F, et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 2001;15(18):2433–44.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development. 2003;130(10):2187–98.

    Article  CAS  PubMed  Google Scholar 

  117. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):380–3.

    Article  CAS  PubMed  Google Scholar 

  118. Uesaka T, Nagashimada M, Yonemura S, Enomoto H. Diminished Ret expression compromises neuronal survival in the colon and causes intestinal aganglionosis in mice. J Clin Invest. 2008;118(5):1890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jain S, Naughton CK, Yang M, Strickland A, Vij K, Encinas M, et al. Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development. 2004;131(21):5503–13.

    Article  CAS  PubMed  Google Scholar 

  120. Carniti C, Belluco S, Riccardi E, Cranston AN, Mondellini P, Ponder BA, et al. The RetC620R mutation affects renal and enteric development in a mouse model of Hirschsprung’s disease. Am J Pathol. 2006;168(4):1262–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Asai N, Fukuda T, Wu Z, Enomoto A, Pachnis V, Takahashi M, et al. Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development. 2006;133(22):4507–16.

    Article  CAS  PubMed  Google Scholar 

  122. Ibiza S, García-Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535(7612):440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994;79(7):1277–85.

    Article  CAS  PubMed  Google Scholar 

  124. Coventry S, Yost C, Palmiter RD, Kapur RP. Migration of ganglion cell precursors in the ileoceca of normal and lethal spotted embryos, a murine model for Hirschsprung disease. Lab Invest. 1994;71(1):82–93.

    CAS  PubMed  Google Scholar 

  125. McCallion AS, Stames E, Conlon RA, Chakravarti A. Phenotype variation in two-locus mouse models of Hirschsprung disease: tissue-specific interaction between Ret and Ednrb. Proc Natl Acad Sci U S A. 2003;100(4):1826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fujimoto T. Natural history and pathophysiology of enterocolitis in the piebald lethal mouse model of Hirschsprung’s disease. J Pediatr Surg. 1988;23(3):237–42.

    Article  CAS  PubMed  Google Scholar 

  127. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994;79(7):1267–76.

    Article  CAS  PubMed  Google Scholar 

  128. Nagy N, Goldstein AM. Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev Biol. 2006;293(1):203–17.

    Article  CAS  PubMed  Google Scholar 

  129. Nagy N, Mwizerwa O, Yaniv K, Carmel L, Pieretti-Vanmarcke R, Weinstein BM, et al. Endothelial cells promote migration and proliferation of enteric neural crest cells via beta1 integrin signaling. Dev Biol. 2009;330(2):263–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fattahi F, Steinbeck JA, Kriks S, Tchieu J, Zimmer B, Kishinevsky S, et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature. 2016;531(7592):105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lang D, Epstein JA. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet. 2003;12(8):937–45.

    Article  CAS  PubMed  Google Scholar 

  132. Sánchez-Mejías A, Watanabe Y, Fernández RM, López-Alonso M, Antiñolo G, Bondurand N, et al. Involvement of SOX10 in the pathogenesis of Hirschsprung disease: report of a truncating mutation in an isolated patient. J Mol Med (Berl). 2010;88(5):507–14.

    Article  CAS  Google Scholar 

  133. Paratore C, Eichenberger C, Suter U, Sommer L. Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum Mol Genet. 2002;11(24):3075–85.

    Article  CAS  PubMed  Google Scholar 

  134. Corpening JC, Deal KK, Cantrell VA, Skelton SB, Buehler DP, Southard-Smith EM. Isolation and live imaging of enteric progenitors based on Sox10-Histone2BVenus transgene expression. Genesis. 2011;49(7):599–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Watanabe Y, Broders-Bondon F, Baral V, Paul-Gilloteaux P, Pingault V, Dufour S, et al. Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol. 2013;379(1):92–106.

    Article  CAS  PubMed  Google Scholar 

  136. Lake JI, Tusheva OA, Graham BL, Heuckeroth RO. Hirschsprung-like disease is exacerbated by reduced de novo GMP synthesis. J Clin Invest. 2013;123(11):4875–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lake JI, Avetisyan M, Zimmermann AG, Heuckeroth RO. Neural crest requires Impdh2 for development of the enteric nervous system, great vessels, and craniofacial skeleton. Dev Biol. 2016;409(1):152–65.

    Article  CAS  PubMed  Google Scholar 

  138. Schill EM, Lake JI, Tusheva OA, Nagy N, Bery SK, Foster L, et al. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol. 2016;409(2):473–88.

    Article  CAS  PubMed  Google Scholar 

  139. Gasc JM, Clemessy M, Corvol P, Kempf H. A chicken model of pharmacologically-induced Hirschsprung disease reveals an unexpected role of glucocorticoids in enteric aganglionosis. Biol Open. 2015;4(5):666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zani A, Zani-Ruttenstock E, Peyvandi F, Lee C, Li B, Pierro A. A spectrum of intestinal injury models in neonatal mice. Pediatr Surg Int. 2016;32(1):65–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hee Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, R.J., Francis, R., Kim, JE., Kim, TH. (2020). Animal Models of Congenital Gastrointestinal Maladies. In: Liu, A. (eds) Animal Models of Human Birth Defects. Advances in Experimental Medicine and Biology, vol 1236. Springer, Singapore. https://doi.org/10.1007/978-981-15-2389-2_4

Download citation

Publish with us

Policies and ethics