Molten Salt-Assisted Preparation of Nanodiamonds at Atmospheric Pressure

  • Ali Reza KamaliEmail author


Graphite and diamond are well-known allotropes of carbon. Since the latter is far more valuable than the earlier, the transformation of graphitic structures to diamond has been subjected to a large number of studies. The industrial production of diamond crystallites is currently achievable by applying either a combination of enormous external pressure and heat on graphite or graphite–catalyst systems, or detonation of explosive carbonaceous materials. In comparison with graphite, the conversion of carbon nanostructures into diamond can be more favorable due to the effect of the surface tension brought about by the nanometer-sized curvature of carbon nanomaterials. A more facile synthesis of diamond is based on the molten salt preparation of core–shell carbon nanostructures in molten salts using either graphite or CO2 as the feed materials, and subsequent heat treatment of the fabricated nanostructured materials at atmospheric pressures, far less severe conditions than conventional processes. This chapter reviews some of the main features of these processes.


Nanodiamonds Molten salt Carbon encapsulation Nucleation Growth Atmospheric pressure CO2 capture 


  1. 1.
    F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.K. Mao, A.F. Goncharov, The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996)CrossRefGoogle Scholar
  2. 2.
    H.P. Bovenkerk, F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf Jr., Preparation of diamond. Nature 184, 1094 (1959)CrossRefGoogle Scholar
  3. 3.
    M. AKaishi, H. Kanda, S. Yamaoka, Synthesis of diamond from graphite-carbonate systems under very high temperature and pressure. J. Cryst. Growth 104, 578–581 (1990)CrossRefGoogle Scholar
  4. 4.
    Y.N. Pal’yanov, A.G. Sokol, Y.M. Borzdov, A.F. Khokhryakov, A.F. Shatsky, N.V. Sobolev, The diamond growth from Li2CO3, Na2CO3, K2CO3 and Cs2CO3 solvent-catalysts at P = 7 GPa and T = 1700–1750 °C. Diam. Relat. Mater. 8, 1118–1124 (1999)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, H. Kanda, Growth of HPHT diamonds in alkali halides: Possible effects of oxygen contamination. Diam. Relat. Mater. 7, 57–63 (1998)CrossRefGoogle Scholar
  6. 6.
    E. Tomlinson, A. Jones, J. Milledge, High-pressure experimental growth of diamond using C–K2CO3–KCl as an analogue for Cl-bearing carbonate fluid. Lithos 77, 287–294 (2004)CrossRefGoogle Scholar
  7. 7.
    A.V. Spivak, Y.A. Litvin, A.V. Shushkanova, V.Y. Litvin, A.A. Shiryaev, Diamond formation in carbonate-silicate-sulfide-carbon melts: Raman- and IR-microspectroscopy. Eur. J. Mineral. 20, 341–347 (2008)CrossRefGoogle Scholar
  8. 8.
    A.V. Krasheninnikov, F. Banhart, Engineering of nanostructured carbon materials with electron or ion beams. Nature Mater. 6, 723–733 (2007)CrossRefGoogle Scholar
  9. 9.
    L.T. Sun, J.L. Gong, Z.Y. Zhu, D.Z. Zhu, S.X. He, Z.X. Wang, Nanocrystalline diamond from carbon nanotubes. Appl. Phys. Lett. 84, 2901–2903 (2004)CrossRefGoogle Scholar
  10. 10.
    F. Banhart, P.M. Ajayan, Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382, 433–435 (1996)CrossRefGoogle Scholar
  11. 11.
    Q.X. Liu, C.X. Wang, S.W. Li, J.X. Zhang, G.W. Yang, Nucleation stability of diamond nanowires inside carbon nanotubes: A thermodynamic approach. Carbon 42, 629–633 (2004)CrossRefGoogle Scholar
  12. 12.
    P.S. Decarli, J.C. Jamieson, Formation of diamond by explosive shock. Science 133, 1821–1822 (1961)CrossRefGoogle Scholar
  13. 13.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nature Nanotechnol. 7, 11–23 (2012)CrossRefGoogle Scholar
  14. 14.
    F. Fendrych, A. Taylor, L. Peksa, I. Kratochvilova, J. Vlcek, V. Rezacova, V. Petrak, Z. Kluiber, L. Fekete, M. Liehr, M. Nesladek, Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas microwave CVD system. J. Phys. D Appl. Phys. 42, 374018 (2010)CrossRefGoogle Scholar
  15. 15.
    R.J. Narayan, R.D. Boehm, A.V. Aumant, Medical applications of diamond particles & surfaces. Mater. Today 14, 154–163 (2011)CrossRefGoogle Scholar
  16. 16.
    T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, Materials: Ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003)CrossRefGoogle Scholar
  17. 17.
    Y.N. Palyanov, I.N. Kupriyanov, A.F. Khokhryakov, V.G. Ralchenko, Crystal growth of diamond. In: Handbook of Crystal Growth, 2nd edn., vol. 2a, ed. by P. Rudolph, (Elsevier, 2015) pp. 671–713Google Scholar
  18. 18.
    Y.N. Palyanov, I.N. Kupriyanov, Y.M. Borzdov, N.V. Surovtsev, Germanium: A new catalyst for diamond synthesis and a new optically active impurity in diamond. Sci. Rep. 5, 14789 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Borzdov, Y. Pal’yanov, I. Kupriyanov, V. Gusev, A. Khokhryakov, A. Sokol, A. Efremov, HPHT synthesis of diamond with high nitrogen content from an Fe3N–C system. Diam. Relat. Mater. 11, 1863–1870 (2002)CrossRefGoogle Scholar
  20. 20.
    M. Akaishi, H. Kanda, S. Yamaoka, Phosphorus: An elemental catalyst for diamond synthesis and growth. Science 259, 1592–1593 (1993)CrossRefGoogle Scholar
  21. 21.
    Y.N. Palyanov, I.N. Kupriyanov, Y.M. Borzdov, A.G. Sokol, A.F. Khokhryakov, Diamond crystallization from a Sulfur–Carbon system at HPHT conditions. Cryst. Growth Des. 9, 2922–2926 (2009)CrossRefGoogle Scholar
  22. 22.
    V.L. Solozhenko, V.Z. Turkevich, O.O. Kurakevych, W.A. Crichton, M. Mezouar, Kinetics of diamond crystallization from the melt of the Fe–Ni–C system. J. Phys. Chem. B 106, 6634–6637 (2002)CrossRefGoogle Scholar
  23. 23.
    I.C. Lin, C.J. Lin, W.H. Tuan, Diffusion coefficient of carbon in Fe–Ni alloy during synthesis of diamond under high temperature and high pressure. Ceram. Int. 139, 8861–8864 (2013)CrossRefGoogle Scholar
  24. 24.
    Y.N. Pal’yanov, A.G. Sokol, Y.M. Borzdov, N.V. Sobolev, Experimental study of diamond crystallization in carbonate-carbon systems in connection with the problem of diamond genesis in magmatic and metamorphic rocks. Geol. Geofiz. 39, 1780–1793 (1998)Google Scholar
  25. 25.
    M. Mandal, F. Haso, T. Liu, Y. Fei, K. Landskron, Size tunable synthesis of solution processable diamond nanocrystals. Chem. Commun. 50, 11307–11310 (2014)CrossRefGoogle Scholar
  26. 26.
    Q. Jiao, X. Zhu, X. Xiao, X. Zuo, J. Nan, L. Wang, Carbon Nano-Fragments Derived from the lithium-intercalated graphite physical and analytical electrochemistry, electrocatalysis, and photoelectrochemistry. ECS Electrochem. Lett. 2, H27–H29 (2013)CrossRefGoogle Scholar
  27. 27.
    B. Wei, J. Zhang, J. Liang, W. Liu, Z. Gao, D. Wu, Carbon nanotubes transfer to diamond by laser irradiation. J. Mat. Sci. Lett. 16, 402–403 (1997)CrossRefGoogle Scholar
  28. 28.
    B. Wei, J. Zhang, J. Liang, D. Wu, The mechanism of phase transformation from carbon nanotube to diamond. Carbon 16, 997–1001 (1998)CrossRefGoogle Scholar
  29. 29.
    W. Han, S. Fan, Q. Li, C.L. Zhang, Conversion of Nickel coated carbon nanotubes to diamond under high pressure and high temperature. Jpn J. Appl. Phys. Lett. 37, L1085 (1998)CrossRefGoogle Scholar
  30. 30.
    L. Cao, C. Gao, H. Sun, G. Zou, Z. Zhang, X. Zhang, M. He, M. Zhang, Synthesis of diamond from carbon nanotubes under high pressure and high temperature. Carbon 39, 311–314 (2001)CrossRefGoogle Scholar
  31. 31.
    H. Yusa, Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. Diam. Relat. Mater. 11, 87–91 (2002)CrossRefGoogle Scholar
  32. 32.
    Y.Q. Zhu, T. Sekine, T. Kobayashi, E. Takazawa, M. Terrones, H. Terrones, Collapsing carbon nanotubes and diamond formation under shock waves. Chem. Phys. Lett. 287, 689–693 (1998)CrossRefGoogle Scholar
  33. 33.
    A. Merlen, P. Toulemonde, S.L. Floch, G. Montagnac, T. Hammouda, O. Marty, A. San Miguel, High pressure–high temperature synthesis of diamond from single-wall pristine and iodine doped carbon nanotube bundles. Carbon 47, 1643–1651 (2009)CrossRefGoogle Scholar
  34. 34.
    F. Zhang, M. Adam, F. Ahmed, E. Otterstein, E. Burkel, Pulsed electric field induced diamond synthesis from carbon nanotubes with solvent catalysts. Diam. Relat. Mater. 20, 853–858 (2011)CrossRefGoogle Scholar
  35. 35.
    F. Zhang, F. Ahmed, G. Holzhuter, E. Burkel, Growth of diamond from fullerene C60 by spark plasma sintering. J. Cryst. Growth 340, 1–5 (2012)CrossRefGoogle Scholar
  36. 36.
    Q. Yang, S. Yang, C. Xiao, A. Hirose, Transformation of carbon nanotubes to diamond in microwave hydrogen plasma. Mater. Lett. 61, 2208–2211 (2007)CrossRefGoogle Scholar
  37. 37.
    A.R. Kamali, C. Schwandt, D.J. Fray, Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials. Mater. Charact. 62, 987–994 (2011)CrossRefGoogle Scholar
  38. 38.
    A.R. Kamali, C. Schwandt, D.J. Fray, On the oxidation of electrolytic carbon nanomaterials. Corros. Sci. 54, 307–313 (2012)CrossRefGoogle Scholar
  39. 39.
    A.R. Kamali, D.J. Fray, Preparation of nanodiamonds from carbon nanoparticles at atmospheric pressure. Chem. Commun. 51, 5594–5597 (2015)CrossRefGoogle Scholar
  40. 40.
    R. Brukh, S. Mitra, Kinetics of carbon nanotube oxidation. J. Mater. Chem. 17, 619–623 (2007)CrossRefGoogle Scholar
  41. 41.
    A.R. Kamali, D.J. Fray, Towards large scale preparation of carbon nanostructures in molten LiCl. Carbon 77, 835–845 (2014)CrossRefGoogle Scholar
  42. 42.
    T. Okuyama, H. Maskill, Organic Chemistry (Oxford University Press, UK, 2014)Google Scholar
  43. 43.
    J.K. Casper, Greenhouse Gases: Worldwide impacts. Facts on File. (USA, 2009)Google Scholar
  44. 44.
    J. Shen, R. Kas, Y.Y. Bridja, O.D. Morales, Y.K. Kwon, I. Ledezma, K.J.P. Schouten, G. Mul, M.T.M. Koper, Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nature Commun. 6, 8177 (2015)CrossRefGoogle Scholar
  45. 45.
    J.L. White, M.F. Baruch, J.E. Pander III, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T.W. Shaw, E. Abelev, A.B. Bocarsly, Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015)CrossRefGoogle Scholar
  46. 46.
    R.J. Lim, M. Xie, M.A. Sk, J.M. Lee, A. Fisher, X. Wang, K.H. Lim, A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal. Today 15, 169–180 (2014)CrossRefGoogle Scholar
  47. 47.
    K. Kamimura, A. Endo, CO2 adsorption–desorption performance of mesoporous zirconium hydroxide with robust water durability. Phys. Chem. Chem. Phys. 18, 2699–2709 (2016)CrossRefGoogle Scholar
  48. 48.
    B.H. Solis, Y. Cui, X. Weng, J. Seifert, S. Schauermann, J. Sauer, S. Shaikhutdinov, H.J. Freund, Initial stages of CO2 adsorption on CaO: a combined experimental and computational study. Phys. Chem. Chem. Phys. 19, 4231–4242 (2017)CrossRefGoogle Scholar
  49. 49.
    A. Pougin, M. Dilla, J. Strunk, Identification and exclusion of intermediates of photocatalytic CO2 reduction on TiO2 under conditions of highest purity. Phys. Chem. Chem. Phys. 18, 10809–10817 (2016)CrossRefGoogle Scholar
  50. 50.
    O.I. Malyi, P. Thiyam, M. Bostrom, C. Persson, A first principles study of CO2 adsorption on α-SiO2 (001) surfaces. Phys. Chem. Chem. Phys. 17, 20125–20133 (2015)CrossRefGoogle Scholar
  51. 51.
    C. Breyer, D. Reichert, J. Seide, R. Hutti, Fi Mertens, S. Kureti, Kinetic modeling of the adsorption and desorption of CO2 on α-Fe2O3. Phys. Chem. Chem. Phys. 17, 27011–27018 (2015)CrossRefGoogle Scholar
  52. 52.
    J. Koo, H. Bae, L. Kang, B. Huang, H. Lee, Calcium-decorated carbon nanostructures for the selective capture of carbon dioxide. Phys. Chem. Chem. Phys. 18, 29086–29091 (2016)CrossRefGoogle Scholar
  53. 53.
    Y. Boyjoo, Y. Cheng, H. Zhong, H. Tian, J. Pan, V.K. Pareek, S.P. Jiang, J.F. Lamonier, M. Jaroniec, J. Liu, From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors. Carbon 116, 490–499 (2017)CrossRefGoogle Scholar
  54. 54.
    G. Singh, I.Y. Kim, K.S. Lakhi, P. Srivastava, R. Naidu, A. Vinu, Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon 116, 448–455 (2017)CrossRefGoogle Scholar
  55. 55.
    T. Jafari, E. Moharreri, P. Toloueinia, A.S. Amin, S. Sahoo, N. Khakpash, I. Noshadi, S.P. Alpay, S.L. Suib, Microwave-assisted synthesis of amine functionalized mesoporous polydivinylbenzene for CO2 adsorption. J. CO2 Utilization 19, 79–90 (2017)CrossRefGoogle Scholar
  56. 56.
    P.J. Carvalho, K.A. Kurnia, J.A.P. Coutinho, Dispelling some myths about the CO2 solubility in ionic liquids. Phys. Chem. Chem. Phys. 18, 14757–14771 (2016)CrossRefGoogle Scholar
  57. 57.
    Y. Xu, CO2 absorption behavior of azole-based protic ionic liquids: Influence of the alkalinity and physicochemical properties, J. CO2 Utilization 19, 1–8 (2017)Google Scholar
  58. 58.
    L.M. Azofra, D.R. MacFarlane, C. Sun, An intensified π-hole in beryllium-doped boron nitride meshes: its determinant role in CO2 conversion into hydrocarbon fuels. Chem. Commun. 52, 3548–3551 (2016)CrossRefGoogle Scholar
  59. 59.
    M.D. Porosoff, S. Kattel, W. Li, P. Liu, J.G. Chen, Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides. Chem. Commun. 51, 6988–6991 (2015)CrossRefGoogle Scholar
  60. 60.
    Q. Jiang, Z. Chen, J. Tong, M. Yang, Z. Jiang, C. Li, Direct thermolysis of CO2 into CO and O2. Chem. Commun. 53, 1188–1191 (2017)CrossRefGoogle Scholar
  61. 61.
    G.H. Gunasekar, K. Park, K.D. Jung, S. Yoon, Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts. Inorg. Chem. Front. 3, 882–895 (2016)CrossRefGoogle Scholar
  62. 62.
    C.S. He, L. Gong, J. Zhang, P.P. He, Y. Mu, Highly selective hydrogenation of CO2 into formic acid on a nano-Ni catalyst at ambient temperature: Process, mechanisms and catalyst stability original. J. CO2 Utilization 19, 157–164 (2017)Google Scholar
  63. 63.
    E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013)CrossRefGoogle Scholar
  64. 64.
    A.A. Marciniak, O.C. Alves, L.G. Appel, C.J.A. Mota, Synthesis of dimethyl carbonate from CO2 and methanol over CeO2: Role of copper as dopant and the use of methyl trichloroacetate as dehydrating agent. J. Catal. 371, 88–95 (2019)CrossRefGoogle Scholar
  65. 65.
    M.H. Nazare, J. Neves, (eds.), Properties, Growth and Applications of Diamond, (The Institution of Electrical Engineering (INSPEC), UK, 2001)Google Scholar
  66. 66.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nature Nanotech. 7, 11–23 (2012)CrossRefGoogle Scholar
  67. 67.
    C.V. Vasilevich, D.E. Vjacheslavovna, Blasting chamber for synthesis of detonation nanodiamonds, RU-Patent 2327515 2006Google Scholar
  68. 68.
    A.R. Kamali, Nanocatalytic conversion of CO2 into nanodiamonds. Carbon 123, 205–215 (2017)CrossRefGoogle Scholar
  69. 69.
    H.A. Laitinen, Y. Yamamura, I. Uchida, Effect of moisture on the chromium (III)-chromium (II) electrode reaction in molten LiCl–KCl eutectic. J. Electrochem. Soc. 125, 1450–1454 (1978)CrossRefGoogle Scholar
  70. 70.
    W.J. Burkhard, J.D. Corbett, The solubility of water in molten mixtures of LiCl and KCl. J. Am. Chem. Soc. 79, 6361–6363 (1957)CrossRefGoogle Scholar
  71. 71.
    N.Q. Minh, B.J. Welch, The cathodic reduction of HCl dissolved in LiCl + KCl + ZnCl2 melts. J. Electroanal. Chem. 92, 179–182 (1978)CrossRefGoogle Scholar
  72. 72.
    J.D. Van Norman, R.J. Tivers, A study of HCl in the LiCl–KCl eutectic. J. Electrochem. Soc. 118, 258–259 (1971)CrossRefGoogle Scholar
  73. 73.
    N.Q. Minh, B.J. Welch, The reduction of HCl dissolved in LiCl–KCl eutectic. Aust. J. Chem. 28, 965–973 (1975)CrossRefGoogle Scholar
  74. 74.
    N.Q. Minh, B.J. Welch, Stoichiometry and mechanism of the cathodic reduction process for HCl dissolved in LiCI–KCl eutectic. Aust. J. Chem. 28, 2579–2585 (1975)CrossRefGoogle Scholar
  75. 75.
    Y. Kado, T. Goto, R. Hagiwara, Dissolution behavior of lithium oxide in molten LiCl–KCl systems. J. Chem. Eng. Data 53, 2816–2819 (2008)CrossRefGoogle Scholar
  76. 76.
    D. Inman, D.G. Lovering, Ionic Liquids (Springer, New York, 1981), p. 192CrossRefGoogle Scholar
  77. 77.
    A.M. Kruizenga, Corrosion Mechanisms in Chloride and Carbonate Salts. Sandia Report, (National Technical Information Service, USA, 2012)Google Scholar
  78. 78.
    A.R. Kamali, D.J. Fray, Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835–1841 (2014)CrossRefGoogle Scholar
  79. 79.
    Y. Lu, Y. Liu, C. Zhou, G. Luo, Preparation of Li2CO3 nanoparticles by carbonation reaction using a microfiltration membrane dispersion microreactor. Ind. Eng. Chem. Res. 53, 11015–11020 (2014)CrossRefGoogle Scholar
  80. 80.
    L. Rojo, I.C. Hurtado, M.C. Morant-Minana, G.G. Mandayo, E. Castano, Enhanced features of Li2CO3 sputtered thin films induced by thickness and annealing time. CrystEngComm 17, 1597–1602 (2015)CrossRefGoogle Scholar
  81. 81.
    P.W. Jaschin, K.B. Varma, Rapid and facile one-step synthesis of LiTaO3 nanorods. CrystEngComm 17, 4642–4646 (2015)CrossRefGoogle Scholar
  82. 82.
    C. Yerlikaya, N. Ullah, A.R. Kamali, R.V. Kumar, Size-controllable synthesis of lithium niobate nanocrystals using modified Pechini polymeric precursor method. J. Therm. Anal. Calorim. 125, 17–22 (2016)CrossRefGoogle Scholar
  83. 83.
    W. Liu, J. Zhang, Q. Wang, X. Xie, Y. Lou, B. Xia, The effects of Li2CO3 particle size on the properties of lithium titanate as anode material for lithium-ion batteries. Ionics 20, 1553–1560 (2014)CrossRefGoogle Scholar
  84. 84.
    B. Akinwolemiwa, L. Yu, D. Hu, X. Jin, J.M. Slattery, G.Z. Chen, Highlights from liquid salts for energy and materials—Faraday Discussion, Ningbo, China, 11–13 May 2016. Chem. Commun. 52, 12538–12554 (2016)CrossRefGoogle Scholar
  85. 85.
    Y. Zhou, R. Ma, P. Li, Y. Chen, Q. Liu, G. Cao, J. Wang, Ditungsten carbide nanoparticles encapsulated by ultrathin graphitic layers with excellent hydrogen-evolution electrocatalytic properties. J. Mater. Chem. A 4, 8204–8210 (2016)CrossRefGoogle Scholar
  86. 86.
    R.S. Subramoney, D.C. Ruoff, B. Lorents, R. Chan, M.J.D. Malhotra, Parvin, Magnetic separation of GdC2 encapsulated in carbon nanoparticles. Carbon 32, 507–513 (1994)CrossRefGoogle Scholar
  87. 87.
    X. Bin, J. Chen, H. Cao, L. Chen, J. Yuan, Preparation of graphene encapsulated copper nanoparticles from CuCl2–GIC. J. Phys. Chem. Solids 70, 1–7 (2009)CrossRefGoogle Scholar
  88. 88.
    D.W. McKee, D. Chatterji, The catalytic behavior of alkali metal carbonates and oxides in graphite oxidation reactions. Carbon 13, 381–390 (1975)CrossRefGoogle Scholar
  89. 89.
    A.R. Kamali, G. Divitini, C. Schwandt, D.J. Fray, Correlation between microstructure and thermokinetic characteristics of electrolytic carbon nanomaterials. Corros. Sci. 64, 90–97 (2012)CrossRefGoogle Scholar
  90. 90.
    G.N. Yushin, S. Osswald, V.I. Padalko, G.P. Bogatyreva, Y. Gogotsi, Effect of sintering on structure of nanodiamond. Diam. Relat. Mater. 14, 1721–1729 (2005)CrossRefGoogle Scholar
  91. 91.
    F.P. Bundy, The P, T phase and reaction diagram for elemental carbon. J. Geophys. Res. 85, 6930–6936 (1980)CrossRefGoogle Scholar
  92. 92.
    C.M. Sung, M.F. Tai, Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure. Int. J. Refract. Met. Hard Mater. 15, 237–256 (1997)CrossRefGoogle Scholar
  93. 93.
    M. Schrauder, O. Navon, Hydrous and carbonatitic mantle fluids in hydrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta 58, 761–771 (1994)CrossRefGoogle Scholar
  94. 94.
    N.V. Sobolev, V.S. Shatsky, Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343, 742–746 (1990)CrossRefGoogle Scholar
  95. 95.
    M. Akaishi, H. Kanda, S. Yamaoka, Synthesis of diamond from graphite-carbonate system under very high temperature and pressure. J. Crystal Growth 104, 578–581 (1990)CrossRefGoogle Scholar
  96. 96.
    T. Taniguchi, D. Dobson, A.P. Jones, R. Rabe, H.J. Milledge, Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite-K2Mg(CO3)2 systems at high pressure of 9–10 GPa region. J. Mater. Res. 11, 2622–2632 (1996)CrossRefGoogle Scholar
  97. 97.
    Y.A. Litvin, L.T. Chudinovskikh, V.A. Zharikov, Crystallization of diamond and graphite in the mantle alkaline carbonate melts in the experiments at pressure 7–11 GPa. Dokl. Akad. Nauk SSSR 355, 669–672 (1997)Google Scholar
  98. 98.
    Y.A. Litvin, K.A. Aldushin, V.A. Zharikov, Synthesis of diamond at 8.5–9.5 GPa in the system K2Ca(CO3)2–Na2Ca(CO3)2–C corresponding to the composition of fluidcarbonatitic in inclusions diamond from kimberlites. Dokl. Akad. Nauk SSSR 367, 529–532 (1999)Google Scholar
  99. 99.
    A.G. Sokol, A.A. Tomilenko, Y.N. Palyanov, Y.M. Borzdov, G.A. Palyanova, A.F. Khokhryakov, Fluid regime of diamond crystallisation in carbonate-carbon systems. Eur. J. Mineral. 12, 367–375 (2000)CrossRefGoogle Scholar
  100. 100.
    S. Ferro, Synthesis of diamond. J. Mater. Chem. 12, 2843–2855 (2002)CrossRefGoogle Scholar
  101. 101.
    P.N. Gavryushkin, A. Behtenova, Z.I. Popov, V.V. Bakakin, A.Y. Likhacheva, K.D. Litasov, A. Gavryushkin, Toward analysis of structural changes common for alkaline carbonates and binary compounds: Prediction of high-pressure structures of Li2CO3, Na2CO3, and K2CO3. Cryst. Growth Des. 16, 5612–5617 (2016)CrossRefGoogle Scholar
  102. 102.
    J.W. Kim, H.G. Lee, Thermal and carbothermic decomposition of Na2CO3 and Li2CO3. Metall. Mater. Trans. B 32, 17–24 (2001)CrossRefGoogle Scholar
  103. 103.
    A. Rohrbach, M.W. Schmidt, Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 472, 209–212 (2011)CrossRefGoogle Scholar
  104. 104.
    V. Stagno, D.O. Ojwang, C.A. McCammon, D.J. Frost, The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493, 84–88 (2013)CrossRefGoogle Scholar
  105. 105.
    R. Burgess, E. Layzelle, G. Turner, J.W. Harris, Constraints on the age and halogen composition of mantle fluids in Siberian coated diamonds. Earth Planet. Sci. Lett. 197, 193–203 (2002)CrossRefGoogle Scholar
  106. 106.
    L.H. Johnson, R. Burgess, G. Turner, J.W. Harris, Noble gas and halogen geochemistry of mantle fluids: Comparison of African and Canadian diamonds. Geochim. Cosmochim. Acta 64, 717–732 (2000)CrossRefGoogle Scholar
  107. 107.
    G. Turner, R. Burgess, M. Bannon, Isotope evidence for the involvement of recycled sediments in diamond formation. Nature 344, 649–653 (1990)CrossRefGoogle Scholar
  108. 108.
    Q. Zou, Y.G. Li, L.H. Zou, M.Z. Wang, Characterization of structures and surface states of the nanodiamond synthesized by detonation. Mater. Charact. 60, 1257–1262 (2009)CrossRefGoogle Scholar
  109. 109.
    J.H. Gong, M.S. Li, B. Xu, L.W. Yin, Y.X. Liu, H.G. Liu, TEM and DSC studies on the synthesis diamond grown from Fe–Ni–C–B system under HPHT. J. Mater. Sci. 41, 3197–3200 (2006)CrossRefGoogle Scholar
  110. 110.
    P.E. Pehrsson, T.W. Mercer, J.A. Chaney, Thermal oxidation of the hydrogenated diamond (100) surface. Surf. Sci. 497, 13–28 (2002)CrossRefGoogle Scholar
  111. 111.
    D. Berman, S.A. Deshmukh, S.K.R.S. Sankaranarayanan, A. Erdemir, A.V. Sumant, Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015)CrossRefGoogle Scholar
  112. 112.
    J. Yu, G. Liu, A.V. Sumant, V. Goyal, A.A. Balandin, Graphene-on-diamond devices with increased current-carrying capacity: Carbon sp2-on-sp3 technology. Nano Lett. 12, 1603–1608 (2012)CrossRefGoogle Scholar
  113. 113.
    YuV Fedoseeva, L.G. Bulusheva, A.V. Okotrub, M.A. Kanygin, D.V. Gorodetskiy, I.P. Asanov, D.V. Vyalikh, A.P. Puzyr, V.S. Bondar, Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array. Sci. Rep. 5, 9379 (2015)CrossRefGoogle Scholar
  114. 114.
    N.A. Bushuev, P.D. Shalaev, A.R. Yafarov, R.K. Yafarov, Influence of the microwave plasma deposition regime on the field-electron emission characteristics of nanodiamond-graphite composite films. Tech. Phys. Lett. 41, 489–492 (2015)CrossRefGoogle Scholar
  115. 115.
    S. Ren, H. Xu, J. Chen, X. Qu, Effects of sintering process on microstructure and properties of flake graphite-diamond/copper composites. Mater. Manuf. Process. 31, 1377–1383 (2016)CrossRefGoogle Scholar
  116. 116.
    W.P.Serena Saw, M. Mariatti, Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications. J. M. Sci. Mater. Electron. 23, 817–824 (2012)CrossRefGoogle Scholar
  117. 117.
    Y.Q. Hou, D.M. Zhuang, G. Zhang, M.S. Wu, J.J. Liu, Tribological performances of diamond film and graphite/diamond composite film. Wear 253, 711–719 (2002)CrossRefGoogle Scholar
  118. 118.
    B. Ntsendwana, B.B. Mamba, S. Sampatha, O.A. Arotiba, Synthesis, characterisation and application of an exfoliated graphite–diamond composite electrode in the electrochemical degradation of trichloroethylene. RSC Adv. 3, 24473–24483 (2013)CrossRefGoogle Scholar
  119. 119.
    M.G. Peleyeju, E.H. Umukoro, J.O. Babalola, O.A. Arotiba, Electrochemical degradation of an anthraquinonic dye on an expanded graphite-diamond composite electrode. Electrocatalysis 7, 132–139 (2016)CrossRefGoogle Scholar
  120. 120.
    S.P. Hong, T.H. Kim, S.W. Lee, Plasma-assisted purification of nanodiamonds and their application for direct writing of a high purity nanodiamond pattern. Carbon 116, 640–647 (2017)CrossRefGoogle Scholar
  121. 121.
    X. Xu, Z. Yu, Influence of thermal oxidation on as-synthesized detonation nanodiamond. Particulogy 10, 339–344 (2012)CrossRefGoogle Scholar
  122. 122.
    Y.J. Zhang, Y.L. Peng, C.Q. Ma, B. Shen, Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy 100, 18–28 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Energy and Environmental Materials Research Centre (E2MC), School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations