Mechanisms Involved in the Electrolytic Fabrication of Carbon Nanostructures

  • Ali Reza KamaliEmail author


The formation of various forms of carbon nanostructures in molten salts, including spherical carbon nanoparticles, carbon nanotubes, carbon nanoscrolls, graphene and carbon encapsulated structures has been found to depend on various processing parameters, including the morphology of the graphite feed material and electrochemical conditions such as the molten salt temperature, the cathode current density and the atmosphere of the molten salt electrolysis process. The mechanisms involved in the formation of these carbon nanostructures can be speculated by the correlation between the characteristics of the products and the processing parameters. This chapter concerns various possible mechanisms by which the electrolytic formation of carbon nanostructures in molten salts can be explained.


Molten salts Graphite Carbon nanostructures Graphene Intercalation Hydrogen Lithium Chemical reaction Electrochemistry 


  1. 1.
    A.R. Kamali, D.J. Fray, Towards large scale preparation of carbon nanostructures in molten LiCl. Carbon 77, 835–845 (2014)CrossRefGoogle Scholar
  2. 2.
    G.Z. Chen, X.D. Fan, A. Luget, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Electrolytic conversion of graphite to carbon nanotubes in fused salts. J. Electroanal. Chem. 446, 1–6 (1998)CrossRefGoogle Scholar
  3. 3.
    G.Z. Chen, I. Kinloch, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Electrochemical investigation of the formation of carbon nanotubes in molten salts. High Temp. Mater. Process 2, 459–469 (1998)CrossRefGoogle Scholar
  4. 4.
    I.A. Kinloch, G.Z. Chen, J. Howes, C. Boothroyd, C. Singh, D.J. Fray, A.H. Windle, Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl. Carbon 41, 1127–1141 (2003)CrossRefGoogle Scholar
  5. 5.
    H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, W. Zhang, Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism. J. Mater. Chem. 22, 10452–10456 (2012)CrossRefGoogle Scholar
  6. 6.
    Q. Xu, C. Schwandt, D.J. Fray, Electrochemical investigation of lithium intercalation into graphite from molten lithium chloride. J. Electroanal. 562, 15–21 (2004)CrossRefGoogle Scholar
  7. 7.
    C. Monnin, M. Dubois, N. Papaiconomou, J.P. Simonin, Thermodynamics of the LiCl–H2O system. J. Chem. Eng. Data 47, 1331–1336 (2002)CrossRefGoogle Scholar
  8. 8.
    A.R. Kamali, D.J. Fray, C. Schwandt, Thermokinetic characteristics of lithium chloride. J. Therm. Anal. Calorim. 104, 619–626 (2011)CrossRefGoogle Scholar
  9. 9.
    J.P. Masset, Thermogravimetric study of the dehydration reaction of LiCl–H2O. J. Therm. Anal. Calorim. 96, 439–441 (2009)CrossRefGoogle Scholar
  10. 10.
    V.A. Kovrov, R. Mullabaev, VYu. Shishkin, YuP Zaikov, Solubility of Li2O in an LiCl–KCl Melt. Russian Metallurgy (Metally) 2, 169–173 (2018)CrossRefGoogle Scholar
  11. 11.
    W.J. Burkhard, J.D. Corbett, The solubility of water in molten mixtures of LiCl and KCl. J. Am. Chem. Soc. 79(24), 6361–6363 (1957)CrossRefGoogle Scholar
  12. 12.
    N.Q. Minh, B.J. Welch, The reduction of HCl dissolved in LiCl–KCl eutectic. Aust. J. Chem. 28, 965–973 (1975)CrossRefGoogle Scholar
  13. 13.
    Y. Sakamura, Solubility of Li2O in molten LiCl–MClx (M = Na, K, Cs, Ca, Sr, or Ba) binary systems. J. Electrochem. Soc. 157, E135–E139 (2010)CrossRefGoogle Scholar
  14. 14.
    A.R. Kamali, D.J. Fray, Large-scale preparation of graphene by high temperature diffusion of hydrogen in graphite. Nanoscale 7, 11310–11320 (2015)CrossRefGoogle Scholar
  15. 15.
    C.P. Herrero, R. Ramirez, Diffusion of hydrogen in graphite: a molecular dynamics simulation. J. Phys. D Appl. Phys. 43, 255402 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Shimizu, H. Tachikawa, Thermal behavior of hydrogen atom intercalated between two layers of C150H30 graphite plane: MD simulationJ. Phys. Chem. Solids 64, 419–423 (2003)CrossRefGoogle Scholar
  17. 17.
    Y. Ferro, F. Marinelli, A. Allouche, Density functional theory investigation of the diffusion and recombination of H on a graphite surface. Chem. Phys. Lett. 368, 609 (2003)CrossRefGoogle Scholar
  18. 18.
    M. Warrier, R. Schneider, E. Salonen, K. Nordlund, Multi–scale modeling of hydrogen isotope diffusion in graphite. Contrib. Plasma Phys. 44, 307–310 (2004)CrossRefGoogle Scholar
  19. 19.
    R.A. Causey, The interaction of tritium with graphite and its impact on tokamak operations. J. Nucl. Mater. 162, 151–161 (1989)CrossRefGoogle Scholar
  20. 20.
    W.A. Dino, Y. Miura, H. Nakanishi, H. Kasai, T. Sugimoto, Stable hydrogen configurations between graphite layers. J. Phys. Soc. Jpn. 72, 1867 (2003)CrossRefGoogle Scholar
  21. 21.
    L.A. Girifalco, R.A. Lad, Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J. Chem. Phys. 25, 693 (1956)CrossRefGoogle Scholar
  22. 22.
    R. Zacharia, H. Ulbricht, T. Hertel, Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B: Condens. Matter 69, 155406 (2004)CrossRefGoogle Scholar
  23. 23.
    T. Gould, S. Lebègue, J. Dobson, Dispersion corrections in graphenic systems: A simple and effective model of binding. J. Phys. Condens. Matter. 25, 445010 (2013)Google Scholar
  24. 24.
    R. Strobel, J. Garche, P.T. Moseley, L. Jorissen, G. Wolf, Hydrogen storage by carbon materials. J. Power Sources 159, 781–801 (2006)CrossRefGoogle Scholar
  25. 25.
    A.R. Kamali, Eco-friendly production of high quality low cost graphene and its application in lithium ion batteries. Green Chem. 18, 1952–1964 (2016)CrossRefGoogle Scholar
  26. 26.
    A.R. Kamali, Scalable fabrication of highly conductive 3D graphene by electrochemical exfoliation of graphite in molten NaCl under Ar/H2 atmosphere. J. Ind. Eng. Chem. 52, 18–27 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Terrones, W.K. Hsu, A. Schilder, H. Terrones, N. Grobert, J.P. Hare et al., Novel nanotubes and encapsulated nanowires. Appl. Phys. A 66, 307–317 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Energy and Environmental Materials Research Centre (E2MC), School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations