Advertisement

Interaction of Molten Salts with Graphite

  • Ali Reza KamaliEmail author
Chapter

Abstract

The evaluation of the corrosion behavior of graphite in molten salts is an emerging important issue. It is because the molten salt corrosion of graphite can either be technologically undesirable, for instance in molten salt nuclear reactors, or highly desirable, for example, in the molten salt preparation of carbon nanostructures. This chapter provides an overview of the chemical corrosion of graphite in molten salts and particularly in molten lithium chloride. For this, thermokinetic characteristics of graphite and LiCl are reviewed individually and in combination. The morphological and structural changes occurred upon the exposure of graphite to molten lithium chloride are also discussed.

Keywords

Graphite Molten salts Thermal analysis Corrosion Carbon nanostructures 

References

  1. 1.
    R. Taylo, K.E. Gilchrist, L.J. Poston, Thermal conductivity of polycrystalline graphite. Carbon 6, 537–544 (1968)CrossRefGoogle Scholar
  2. 2.
    G. Cui, Q. Bi, S. Zhu, J. Yang, W. Liu, Tribological properties of bronze–graphite composites under sea water condition. Tribol. Int. 53, 76–86 (2012)CrossRefGoogle Scholar
  3. 3.
    C. Ayache, I.L. Spain, Thermoelectric and thermomagnetic properties of graphite—I: The cylindrical band model. Carbon 17, 277–291 (1979)CrossRefGoogle Scholar
  4. 4.
    J.H. Lee, Y.H. Kang, S.C. Hwang, J.B. Shim, E.H. Kim, S.W. Park, Application of graphite as a cathode material for electrorefining of uranium. Nucl. Technol. 162, 135–143 (2008)CrossRefGoogle Scholar
  5. 5.
    D. Wang, X. Jina, G.Z. Chen, Solid state reactions: An electrochemical approach in molten salts. Annu. Rep. Prog. Chem. Sect. C 104, 189–234 (2008)CrossRefGoogle Scholar
  6. 6.
    P. Hejzlar, B.T. Mattingly, N.E. Todreas, M.J. Driscoll, Advanced fuel elements for passive pressure tube light water reactors. Nucl. Eng. Des. 167, 375–392 (1997)CrossRefGoogle Scholar
  7. 7.
    J. Uhlir, Chemistry and technology of Molten Salt Reactors—history and perspectives. J. Nucl. Mater. 360, 6–11 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Cammi, V. Di Marcello, L. Luzzi, V. Memoli, M.E. Ricotti, A multi-physics modelling approach to the dynamics of Molten Salt Reactors. Ann. Nucl. Energy 38, 1356–1372 (2011)CrossRefGoogle Scholar
  9. 9.
    K. Nagarajan, B.P. Reddy, S. Ghosh, G. Ravisankar, K.S. Mohandas, U.K. Mudali et al., Development of pyrochemical reprocessing for spent metal fuels. Energy Procedia 7, 431–436 (2011)CrossRefGoogle Scholar
  10. 10.
    V. Bernardet, S. Gomes, S. Delpeux, M. Dubois, K. Guérin, D. Avignant D et al., Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit. J. Nucl. Mater. 384, 292–302 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Sure, A.R. Shankar, S. Ramya, U.K. Mudali, Molten salt corrosion of high density graphite and partially stabilized zirconia coated high density graphite in molten LiCl–KCl salt. Ceram. Int. 38, 2803–2812 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Rezaei, A.R. Kamali, Green production of carbon nanomaterials in molten salts, mechanisms and applications. Diam. Relat. Mater. 83, 146–161 (2018)CrossRefGoogle Scholar
  13. 13.
    A.R. Kamali, D.J. Fray, Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds. J. Mater. Sci. 51, 569–576 (2016)CrossRefGoogle Scholar
  14. 14.
    A.R. Kamali, D.J. Fray, Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56, 121–131 (2013)CrossRefGoogle Scholar
  15. 15.
    A.R. Kamali, D.J. Fray, C. Schwandt, Thermokinetic characteristics of lithium chloride. J. Therm. Anal. Calorim. 104, 619–626 (2011)CrossRefGoogle Scholar
  16. 16.
    J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)CrossRefGoogle Scholar
  17. 17.
    A.R. Kamali, C. Schwandt, D.J. Fray, On the oxidation of electrolytic carbon nanomaterials, Corros. Sci. 54, 307–313 (2012)CrossRefGoogle Scholar
  18. 18.
    A.R. Kamali, G. Divitini, C. Schwandt, D.J. Fray, Correlation between microstructure and thermokinetic characteristics of electrolytic carbon nanomaterials. Corros. Sci. 64, 90–97 (2012)CrossRefGoogle Scholar
  19. 19.
    W.W. Liu, S.P. Chai, A.R. Mohamed, U. Hashim, Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. J. Ind. Eng. Chem. 20, 1171–1185 (2014)CrossRefGoogle Scholar
  20. 20.
    M.S. Dresselhaus, A. Jorio, R. Saito R. characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy, Annu. Rev. Cond. Mat. Phys. 1, 89–108 (2010)CrossRefGoogle Scholar
  21. 21.
    Q.Q. Dillon, J.A. Woollam, V. Katkanant, Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B 29, 3482–3489 (1984)CrossRefGoogle Scholar
  22. 22.
    N.C. Cho, D.K. Veirs, J.W. Ager, M.D. Rubin, C.B. Hooper, D.B. Bogy, Effects of substrate temperature on chemical structure of amorphous carbon films. J. Appl. Phys. 71, 2243–2248 (1992)CrossRefGoogle Scholar
  23. 23.
    J.F. Freire, C.A. Achete, G. Mariotto, R. Canteri, Amorphous nitrogenated carbon films: Structural modifications induced by thermal annealing. J. Vac. Sci. Technol., A 12, 3048–3053 (1994)CrossRefGoogle Scholar
  24. 24.
    M. Rusop, X.M. Tian, T. Kinugawa, T. Soga, T. Jimbo, M. Umeno, Preparation and characterization of boron-incorporated amorphous carbon films from a natural source of camphoric carbon as a precursor material. Appl. Surf. Sci. 252, 1693–1703 (2005)CrossRefGoogle Scholar
  25. 25.
    H. Honda, K. Egi, S. Toyoda, Y. Sanada, T. Furuta, Electronic properties of heat treated coals. Carbon 1, 155–164 (1964)CrossRefGoogle Scholar
  26. 26.
    D. Gonzalez, M.A. Montes-Moran, R.J. Young, A.B. Garcia, Effect of temperature on the graphitization process of a semianthracite. Fuel Process. Technol. 79, 245–250 (2002)CrossRefGoogle Scholar
  27. 27.
    J.R. Hahn, H. Kang, S.M. Lee, Y.H. Lee, Mechanistic study of defect-induced oxidation of graphite. J. Phys. Chem. B 103, 9944–9951 (1999)CrossRefGoogle Scholar
  28. 28.
    E.J. Hippo, N. Murdie, A. Hyjazie, The role of active sites in the inhibition of gas-carbon reactions. Carbon 27, 689–695 (1989)CrossRefGoogle Scholar
  29. 29.
    X.W. Luo, J.C. Robin, S.Y. Yu, Effect of temperature on graphite oxidation behaviour. Nucl. Eng. Des. 227, 273–280 (2004)CrossRefGoogle Scholar
  30. 30.
    W.M. Guo, H.N. Xiao, G.J. Zhang, Kinetics and mechanisms of non-isothermal oxidation of graphite in air. Corros. Sci. 50, 2007–2011 (2008)CrossRefGoogle Scholar
  31. 31.
    R. Hui, K. Feiyu, J. Qing-jie, S. Wanci, Synthesis criterion for a metal chloride-graphite intercalation compound by a molten salt method. New Carbon Mater. 24, 18–22 (2009)CrossRefGoogle Scholar
  32. 32.
    N.I. Alekseev, O.V. Arapov, I.M. Belozerov, Y.G. Osipov, K.N. Semenov, S.V. Polovtsev et al., Formation of carbon nanostructures in electrolytic production of alkali metals. Rus. J. Appl. Chem. 78, 1944–1947 (2005)CrossRefGoogle Scholar
  33. 33.
    N.I. Alekseev, Y.G. Osipov, K.N. Semenov, S.V. Polovtsev, N.A. Charykov, O.V. Arapov, Carbon nanostructures in the industrial production of alkali metals by electrolysis. Tech. Phys. 51, 278–280 (2006)CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, X. Sun, Synthesis of carbon nanofibers and foam by catalytic chemical vapor deposition using a water-soluble alkali salt catalyst. Adv. Mater. 19, 961–964 (2007)CrossRefGoogle Scholar
  35. 35.
    P. Chen, H.B. Zhang, G.D. Lin, Q. Hong, K.R. Tsm, Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni–MgO catalyst. Carbon 35, 1495–1501 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Energy and Environmental Materials Research Centre (E2MC), School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations