Advertisement

A State-of-the-Art Literature Review on Microelectromechanical Systems

  • Shivam Hemant Dandgavhal
  • Ashish Ravindra Lande
  • Akbar Ahmad
Conference paper
  • 63 Downloads
Part of the Algorithms for Intelligent Systems book series (AIS)

Abstract

Morphological analysis is a state-of-the-art emerging research topic which has attracted researchers for the dissertation in micro-machining sector. Microscopy techniques like AFM, SEM and TEM have enabled researchers to research and investigate micro-scaled features of elements in the area of microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), biomedical sensors and equipments, pharmaceutical research, micro-machining, etc. This paper reviews the brief literature based on remarkable research work done in the areas of microscopy, micro-manufacturing, smart materials and MEMS. A wide range of micro-machining applications and its alternatives has been conversed. From this literature review, gray areas for the further research have been identified. Current and emerging technology in shape memory alloy (SMA) research based on the literature has been discussed, and future scope for research in this area has been remarked. Thus, this detailed review steps forward for the researchers to acknowledge the wide area for development in micro-machining.

Keywords

Morphological analysis Orthogonal array MEMS Micro-machining Smart materials 

Notes

Acknowledgements

We are very thankful to various researchers whose work was of utmost importance for the formation of this review. Credit is given to them for their valuable share of the research in the field of micro-machining and MEMS. We are thankful to all.

References

  1. 1.
    Majeed A, Ramesh P (2019) Fabrication of MEMS Capacitive Pressure Sensor (MCPS) with Segmented Bossed Diaphragm. In: Sharma R, Rawal D (eds) The physics of semiconductor devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, ChamGoogle Scholar
  2. 2.
    Wang P, Lu Q, Fan Z (2018) Cluster Comput.  https://doi.org/10.1007/s10586-018-2085-3CrossRefGoogle Scholar
  3. 3.
    Dyuzhev NA, Gusev EE, Gryazneva TA et al (2017) Nanotechnol Russ 12:426.  https://doi.org/10.1134/S1995078017040073CrossRefGoogle Scholar
  4. 4.
    Fallah Ghanbari B, Arabi H, Abbasi SM et al (2016) Int J Adv Manuf Technol 87:755.  https://doi.org/10.1007/s00170-016-8343-8CrossRefGoogle Scholar
  5. 5.
    Bao J, Jeppson K, Edwards M et al (2016) Electron Mater Lett 12:1.  https://doi.org/10.1007/s13391-015-5308-2CrossRefGoogle Scholar
  6. 6.
    Natarajan U, Suganthi XH, Periyanan PR (2016) Trans Indian Inst Met 69:1675.  https://doi.org/10.1007/s12666-016-0828-5CrossRefGoogle Scholar
  7. 7.
    Cheng J, Jin Y, Wu J et al (2016) Int J Adv Manuf Technol 86:2197.  https://doi.org/10.1007/s00170-015-8312-7CrossRefGoogle Scholar
  8. 8.
    Anand RS, Patra K, Steiner M et al (2017) Int J Adv Manuf Technol 88:241.  https://doi.org/10.1007/s00170-016-8632-2CrossRefGoogle Scholar
  9. 9.
    Smith J, Xiong W, Yan W et al (2016) Comput Mech 57:583.  https://doi.org/10.1007/s00466-015-1240-4CrossRefGoogle Scholar
  10. 10.
    Hussein M, Aadim K, Hassan E (2016) Structural and surface morphology analysis of copper phthalocyanine thin film prepared by pulsed laser deposition and thermal evaporation techniques. Adv Mater Phys Chem 6:85–97.  https://doi.org/10.4236/ampc.2016.64009CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Lei MK, Zhu XP, Li YP et al (2016) Int J Adv Manuf Technol 82:1831.  https://doi.org/10.1007/s00170-015-7467-6CrossRefGoogle Scholar
  13. 13.
    Sahli M, Lebied A, Gelin JC et al (2015) Int J Adv Manuf Technol 79:2079.  https://doi.org/10.1007/s00170-015-6983-8CrossRefGoogle Scholar
  14. 14.
    Lee SJ, Takahashi M, Kawahito Y et al (2015) Int J Precis Eng Manuf 16:2121.  https://doi.org/10.1007/s12541-015-0274-zCrossRefGoogle Scholar
  15. 15.
    Xiong W, Zhou Y, Hou W et al (2015) Front Optoelectron 8:351.  https://doi.org/10.1007/s12200-015-0481-3CrossRefGoogle Scholar
  16. 16.
    Suganthi XH, Natarajan U, Ramasubbu N (2015) Int J Adv Manuf Technol 81:199.  https://doi.org/10.1007/s00170-015-6900-1CrossRefGoogle Scholar
  17. 17.
    Cecil J, Bharathi Raj Kumar MB, Lu Y et al (2016) Int J Adv Manuf Technol 83: 1569.  https://doi.org/10.1007/s00170-015-7698-6CrossRefGoogle Scholar
  18. 18.
    Park C, Shin BS, Kang MS et al (2015) Int J Precis Eng Manuf 16:1385.  https://doi.org/10.1007/s12541-015-0182-2CrossRefGoogle Scholar
  19. 19.
    Chiou AH, Tsao CC, Hsu CY (2015) Int J Adv Manuf Technol 78:1857.  https://doi.org/10.1007/s00170-014-6778-3CrossRefGoogle Scholar
  20. 20.
    Khanghah SP, Boozarpoor M, Lotfi M et al (2015) Trans Indian Inst Met 68:897.  https://doi.org/10.1007/s12666-015-0525-9CrossRefGoogle Scholar
  21. 21.
    Huo D, Lin C, Choong ZJ et al (2015) Int J Adv Manuf Technol 81:1319.  https://doi.org/10.1007/s00170-015-7308-7CrossRefGoogle Scholar
  22. 22.
    Krestinin AV, Dremova NN, Knerel’man EI et al (2015) Nanotechnol Russia 10:537.  https://doi.org/10.1134/S1995078015040096CrossRefGoogle Scholar
  23. 23.
    Aišman D, Mašek B, Jeníček Š (2014) Unconventional microstructures in tool steel obtained by semi-solid processing and subsequent heat treatment. Solid State Phenom 217–218:235–240 (2015)CrossRefGoogle Scholar
  24. 24.
    Vella PC, Dimov SS, Brousseau E et al (2015) Int J Adv Manuf Technol 76:523.  https://doi.org/10.1007/s00170-014-6148-1CrossRefGoogle Scholar
  25. 25.
    Kaushik A, Kumar R, Huey E et al (2014) Microchim Acta 181:1759.  https://doi.org/10.1007/s00604-014-1255-0CrossRefGoogle Scholar
  26. 26.
    Hua L, Fang Z, Li M et al (2014) Wuhan Univ J Nat Sci 19:93.  https://doi.org/10.1007/s11859-014-0984-6CrossRefGoogle Scholar
  27. 27.
    Oborski P (2014) Int J Adv Manuf Technol 75:1613.  https://doi.org/10.1007/s00170-014-6123-xCrossRefGoogle Scholar
  28. 28.
    Farshbaf Zinati R, Razfar MR (2014) Int J Adv Manuf Technol 75:979.  https://doi.org/10.1007/s00170-014-6178-8CrossRefGoogle Scholar
  29. 29.
    Zhan Z, He N, Li L et al (2015) Int J Adv Manuf Technol 77:2095.  https://doi.org/10.1007/s00170-014-6632-7CrossRefGoogle Scholar
  30. 30.
    Lou S, Jiang X, Scott P (2013) An efficient divide-and-conquer algorithm for morphological filters. Procedia CIRP 10:142–147CrossRefGoogle Scholar
  31. 31.
    Pereira A, Hernandez P, Martinez J, Perez J, Mathia T (2013) Study of morphology wear model of molds from alloys of aluminum EN AW-6082 in injection process. Key Eng Mater 554–557:844–849CrossRefGoogle Scholar
  32. 32.
    Nag Chaudhury J (2014) J Mater Eng Perform 23:152.  https://doi.org/10.1007/s11665-013-0709-6CrossRefGoogle Scholar
  33. 33.
    Liu J, Jiang D, Fu Y et al (2013) Adv Manuf 1:13.  https://doi.org/10.1007/s40436-013-0007-4CrossRefGoogle Scholar
  34. 34.
    Kumar B, Rao T (2012) AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig J Nanomater Biostruct 7(4):1881–1889Google Scholar
  35. 35.
    Löchte C, Kayasa J, Herrmann C, Raatz A (2012) Methods for implementing compensation strategies in micro production systems supported by a simulation approach. In: Ratchev S (eds) Precision assembly technologies and systems. IPAS 2012. IFIP advances in information and communication technology, vol 371. Springer, BerlinCrossRefGoogle Scholar
  36. 36.
    Gil R, Sánchez JA, Ortega N et al (2013) Int J Adv Manuf Technol 65:1459.  https://doi.org/10.1007/s00170-012-4270-5CrossRefGoogle Scholar
  37. 37.
    Lee BS, Park KM, Yu WR et al (2012) Macromol Res 20:605.  https://doi.org/10.1007/s13233-012-0087-1CrossRefGoogle Scholar
  38. 38.
    Kim HB, Hobler G, Steiger A et al (2011) Int J Precis Eng Manuf 12:893.  https://doi.org/10.1007/s12541-011-0119-3CrossRefGoogle Scholar
  39. 39.
    Jimenez H, Mavris D (2010) An evolution of morphological analysis applications in systems engineering. In: American Institute of Aeronautics and Astronautics, 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace expositionGoogle Scholar
  40. 40.
    Liu F, Wu J, Chen K, Xue D (2010) Morphology study by using scanning electron microscopy. In: Microscopy: science, technology, applications and education, pp 1781–1792Google Scholar
  41. 41.
    Zhovklyi VY, Chemeris AI, Filatova AG et al (2010) Bull Russ Acad Sci Phys 74:1034.  https://doi.org/10.3103/S1062873810070312CrossRefGoogle Scholar
  42. 42.
    Lee HJ et al (2010) Desktop micro forming system for micro pattern on the metal substrate. In: Ratchev S (eds) Precision assembly technologies and systems. IPAS 2010. IFIP advances in information and communication technology, vol 315. Springer, BerlinCrossRefGoogle Scholar
  43. 43.
    Kibria G, Doloi B, Bhattacharyya B (2010) Int J Adv Manuf Technol 50:643.  https://doi.org/10.1007/s00170-010-2527-4CrossRefGoogle Scholar
  44. 44.
    Saklakoglu IE, Kasman S (2011) Int J Adv Manuf Technol 54:567.  https://doi.org/10.1007/s00170-010-2953-3CrossRefGoogle Scholar
  45. 45.
    Savanovic P, Zeiler W (2009) Morphological analysis of design concepts emergence in design meetings. In: Stanford, international conference on engineering design, ICED’09, vol 6, pp 179–188Google Scholar
  46. 46.
    Arenas-Alatorre J, Silva-Velazquez Y, Alva Medina A et al (2010) Appl Phys A 98:617.  https://doi.org/10.1007/s00339-009-5451-4CrossRefGoogle Scholar
  47. 47.
    Cheng X, Wang ZG, Kobayashi S et al (2010) Int J Adv Manuf Technol 46:179.  https://doi.org/10.1007/s00170-009-2094-8CrossRefGoogle Scholar
  48. 48.
    Brousseau EB, Dimov SS, Pham DT (2010) Int J Adv Manuf Technol 47:161.  https://doi.org/10.1007/s00170-009-2214-5CrossRefGoogle Scholar
  49. 49.
    Shivareddy S, Bae S-E, Brankovic SR (2008) Cu surface morphology evolution during electropolishing. Electrochem Solid State Lett 11:D13–D17CrossRefGoogle Scholar
  50. 50.
    Liou AC, Chen RH (2006) Int J Adv Manuf Technol 28:1097.  https://doi.org/10.1007/s00170-004-2455-2CrossRefGoogle Scholar
  51. 51.
    Desai AV, Haque MA (2005) Tribol Lett 18:13.  https://doi.org/10.1007/s11249-004-1700-zCrossRefGoogle Scholar
  52. 52.
    Senf B, Mäder T, y de Sosa IN, Bucht A, Knobloch M, Löpitz D, Drossel WG (2017) Sensing and actuating functions by shape memory alloy wires integrated into fiber reinforced plastics. Procedia CIRP 66:249–253CrossRefGoogle Scholar
  53. 53.
    Alaneme K, Okotete E (2016) Reconciling viability and cost-effective shape memory alloy options—a review of copper and iron based shape memory metallic systems. Eng Sci Technol Int J 19:1582–1592CrossRefGoogle Scholar
  54. 54.
    Kang G, Song D (2015) Review on structural fatigue of NiTi shape memory alloys: pure mechanical and thermo-mechanical ones. Theor Appl Mech Lett 5:245–254CrossRefGoogle Scholar
  55. 55.
    Quan D, Hai X (2015) Shape memory alloy in various aviation field. Procedia Eng 99:1241–1246CrossRefGoogle Scholar
  56. 56.
    Lobo PS, Almeida J, Guerreiro L (2015) Shape memory alloys behaviour: a review. Procedia Eng 114:776–783.  https://doi.org/10.1016/j.proeng.2015.08.025CrossRefGoogle Scholar
  57. 57.
    Prashantha S, Mallikarjun US, Shashidhara SM (2014) Procedia Mater Sci 5:567–574.  https://doi.org/10.1016/j.mspro.2014.07.301CrossRefGoogle Scholar
  58. 58.
    Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metall 2011, Article ID 501483, 15 p.  https://doi.org/10.1155/2011/501483CrossRefGoogle Scholar
  59. 59.
    Dönmez B, Özkan B (2011) Design and control of a shape memory alloy actuator for flap type aerodynamic surfaces. In: Proceedings of 18th world congress IFAC, Milano, Italy, Sept 2011Google Scholar
  60. 60.
    Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H (2010) Mater Today 13:54–61CrossRefGoogle Scholar
  61. 61.
    Song G, Ma N, Li H-N (2006) Applications of shape memory alloys in civil structures. Eng Struct 28:1266–1274CrossRefGoogle Scholar
  62. 62.
    Taguchi G (1986) Introduction to quality engineering: designing quality into products and processes (No. 658.562 T3)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shivam Hemant Dandgavhal
    • 1
  • Ashish Ravindra Lande
    • 2
  • Akbar Ahmad
    • 3
  1. 1.Department of Mechanical EngineeringKKWIEERNashikIndia
  2. 2.Department of Mechanical EngineeringKKWPNashikIndia
  3. 3.Department of Electrical EngineeringKKWIEERNashikIndia

Personalised recommendations