Advertisement

Protein Energy Wasting in Chronic Kidney Disease

  • Eiichiro Kanda
Chapter
  • 25 Downloads

Abstract

Chronic kidney disease (CKD) patients are increasing in number globally because kidney function is affected by aging and lifestyle habits. Malnutrition, muscle weakness, and a decline in activities of daily living (ADL) are often observed in elderly CKD patients and dialysis patients, and are related to their CKD prognosis and life prognosis. Chronic inflammation and atherosclerotic disease are associated with malnutrition. Because malnutrition and its related factors affect their prognosis, it is necessary to find and treat patients with malnutrition at an early stage. The state in which the storage of protein and energy source accompanying CKD is decreased is called protein energy wasting (PEW). PEW is diagnosed on the basis of biochemical tests finding such as hypoalbuminemia, physique, muscle mass, and loss of dietary intake. For evaluating PEW, a complex nutritional index taking into account the pathophysiology specific to CKD patients is useful. Because PEW involves various factors such as nutritional status, muscular strength, ADL, and social life, the combined effect of various problems exacerbates PEW and affects life prognosis of CKD patients and dialysis patients. Taking these factors into consideration, not only nutritional therapy but also exercise therapy is necessary to stop the vicious cycle related to the decline of PEW and ADL.

Keywords

Chronic kidney disease Dialysis Protein energy wasting Inflammation Malnutrition Albumin 

References

  1. 1.
    Kagiyama S, Matsumura K, Ansai T, Soh I, Takata Y, Awano S, et al. Chronic kidney disease increases cardiovascular mortality in 80-year-old subjects in Japan. Hypertens Res. 2008;31(11):2053–8.PubMedCrossRefGoogle Scholar
  2. 2.
    van Loon IN, Wouters TR, Boereboom FT, Bots ML, Verhaar MC, Hamaker ME. The relevance of geriatric impairments in patients starting dialysis: a systematic review. Clin J Am Soc Nephrol. 2016;11(7):1245–59.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kurella Tamura M, Covinsky KE, Chertow GM, Yaffe K, Landefeld CS, McCulloch CE. Functional status of elderly adults before and after initiation of dialysis. N Engl J Med. 2009;361(16):1539–47.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kobayashi I, Ishimura E, Kato Y, Okuno S, Yamamoto T, Yamakawa T, et al. Geriatric nutritional risk index, a simplified nutritional screening index, is a significant predictor of mortality in chronic dialysis patients. Nephrol Dial Transplant. 2010;25(10):3361–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Kalantar-Zadeh K, Block G, McAllister CJ, Humphreys MH, Kopple JD. Appetite and inflammation, nutrition, anemia, and clinical outcome in hemodialysis patients. Am J Clin Nutr. 2004;80(2):299–307.CrossRefGoogle Scholar
  6. 6.
    Kang SS, Chang JW, Park Y. Nutritional status predicts 10-year mortality in patients with end-stage renal disease on hemodialysis. Nutrients. 2017;9(4)PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Himmelfarb J. Uremic toxicity, oxidative stress, and hemodialysis as renal replacement therapy. Semin Dial. 2009;22(6):636–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Meerwaldt R, Zeebregts CJ, Navis G, Hillebrands JL, Lefrandt JD, Smit AJ. Accumulation of advanced glycation end products and chronic complications in ESRD treated by dialysis. Am J Kidney Dis. 2009;53(1):138–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R, Riella M, et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia--the good, the bad, and the ugly. Kidney Int. 2005;67(4):1216–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Girndt M, Kaul H, Sester U, Ulrich C, Sester M, Georg T, et al. Anti-inflammatory interleukin-10 genotype protects dialysis patients from cardiovascular events. Kidney Int. 2002;62(3):949–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Honda H, Ueda M, Kojima S, Mashiba S, Suzuki H, Hosaka N, et al. Oxidized high-density lipoprotein is associated with protein-energy wasting in maintenance hemodialysis patients. Clin J Am Soc Nephrol. 2010;5(6):1021–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Liu Y, Coresh J, Eustace JA, Longenecker JC, Jaar B, Fink NE, et al. Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA. 2004;291(4):451–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Kopple JD, Zhu X, Lew NL, Lowrie EG. Body weight-for-height relationships predict mortality in maintenance hemodialysis patients. Kidney Int. 1999;56(3):1136–48.PubMedCrossRefGoogle Scholar
  14. 14.
    Iseki K, Yamazato M, Tozawa M, Takishita S. Hypocholesterolemia is a significant predictor of death in a cohort of chronic hemodialysis patients. Kidney Int. 2002;61(5):1887–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, Cuppari L, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73(4):391–8.CrossRefGoogle Scholar
  16. 16.
    Mehrotra R, Kopple JD. Nutritional management of maintenance dialysis patients: why aren't we doing better? Annu Rev Nutr. 2001;21:343–79.PubMedCrossRefGoogle Scholar
  17. 17.
    Pifer TB, McCullough KP, Port FK, Goodkin DA, Maroni BJ, Held PJ, et al. Mortality risk in hemodialysis patients and changes in nutritional indicators: DOPPS. Kidney Int. 2002;62(6):2238–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Patient Registration Committee JSfDT, Tokyo, Japan. An overview of regular dialysis treatment in Japan as of 31 December 2003. Ther Apher Dial. 2005;9(6):431–58.CrossRefGoogle Scholar
  19. 19.
    Kalantar-Zadeh K, Kilpatrick RD, Kuwae N, McAllister CJ, Alcorn H, Kopple JD, et al. Revisiting mortality predictability of serum albumin in the dialysis population: time dependency, longitudinal changes and population-attributable fraction. Nephrol Dial Transplant. 2005;20(9):1880–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Gama-Axelsson T, Heimbürger O, Stenvinkel P, Bárány P, Lindholm B, Qureshi AR. Serum albumin as predictor of nutritional status in patients with ESRD. Clin J Am Soc Nephrol. 2012;7(9):1446–53.PubMedCrossRefGoogle Scholar
  21. 21.
    Friedman AN, Fadem SZ. Reassessment of albumin as a nutritional marker in kidney disease. J Am Soc Nephrol. 2010;21(2):223–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Kanno Y, Kanda E. Comparison of accuracy between pre-hemodialysis and post-hemodialysis levels of nutritional factors for prediction of mortality in hemodialysis patients. Clin Nutr. 2017;Google Scholar
  23. 23.
    Vogt BP, Borges MCC, Goés CR, Caramori JCT. Handgrip strength is an independent predictor of all-cause mortality in maintenance dialysis patients. Clin Nutr. 2016;35(6):1429–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Fukasawa H, Kaneko M, Niwa H, Matsuyama T, Yasuda H, Kumagai H, et al. Lower thigh muscle mass is associated with all-cause and cardiovascular mortality in elderly hemodialysis patients. Eur J Clin Nutr. 2017;71(1):64–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Tynkevich E, Flamant M, Haymann JP, Metzger M, Thervet E, Boffa JJ, et al. Decrease in urinary creatinine excretion in early stage chronic kidney disease. PLoS One. 2014;9(11):e111949.PubMedCrossRefGoogle Scholar
  26. 26.
    di Micco L, Quinn RR, Ronksley PE, Bellizzi V, Lewin AM, Cianciaruso B, et al. Urine creatinine excretion and clinical outcomes in CKD. Clin J Am Soc Nephrol. 2013;8(11):1877–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Enia G, Sicuso C, Alati G, Zoccali C. Subjective global assessment of nutrition in dialysis patients. Nephrol Dial Transplant. 1993;8(10):1094–8.PubMedGoogle Scholar
  28. 28.
    Yamada K, Furuya R, Takita T, Maruyama Y, Yamaguchi Y, Ohkawa S, et al. Simplified nutritional screening tools for patients on maintenance hemodialysis. Am J Clin Nutr. 2008;87(1):106–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Kalantar-Zadeh K, Kopple JD, Block G, Humphreys MH. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am J Kidney Dis. 2001;38(6):1251–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Bouillanne O, Morineau G, Dupont C, Coulombel I, Vincent JP, Nicolis I, et al. Geriatric nutritional risk index: a new index for evaluating at-risk elderly medical patients. Am J Clin Nutr. 2005;82(4):777–83.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kanda E, Bieber BA, Pisoni RL, Robinson BM, Fuller DS. Importance of simultaneous evaluation of multiple risk factors for hemodialysis patients’ mortality and development of a novel index: dialysis outcomes and practice patterns study. PLoS One. 2015;10(6):e0128652.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Masakane I, Nakai S, Ogata S, Kimata N, Hanafusa N, Hamano T, et al. Annual dialysis data report 2014, JSDT renal data registry (JRDR). Ren Replace Ther. 2017;3(18):1–43.Google Scholar
  33. 33.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39(4):412–23.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kim JC, Kalantar-Zadeh K, Kopple JD. Frailty and protein-energy wasting in elderly patients with end stage kidney disease. J Am Soc Nephrol. 2013;24(3):337–51.PubMedPubMedCentralGoogle Scholar
  37. 37.
    DeFronzo RA, Alvestrand A, Smith D, Hendler R, Hendler E, Wahren J. Insulin resistance in uremia. J Clin Invest. 1981;67(2):563–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Siew ED, Pupim LB, Majchrzak KM, Shintani A, Flakoll PJ, Ikizler TA. Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients. Kidney Int. 2007;71(2):146–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Spoto B, Pisano A, Zoccali C. Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol. 2016;311(6):F1087–F108.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Oner-Iyidogan Y, Gurdol F, Kocak H, Oner P, Cetinalp-Demircan P, Caliskan Y, et al. Appetite-regulating hormones in chronic kidney disease patients. J Ren Nutr. 2011;21(4):316–21.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Inui A. Ghrelin: an orexigenic and somatotrophic signal from the stomach. Nat Rev Neurosci. 2001;2(8):551–60.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Deboer MD, Zhu X, Levasseur PR, Inui A, Hu Z, Han G, et al. Ghrelin treatment of chronic kidney disease: improvements in lean body mass and cytokine profile. Endocrinology. 2008;149(2):827–35.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Barazzoni R, Gortan Cappellari G, Zanetti M, Guarnieri G. Ghrelin and muscle metabolism in chronic uremia. J Ren Nutr. 2012;22(1):171–5.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Abe M, Hamano T, Wada A, Nakai S, Masakane I, Renal Data Registry Committee JpSfDT. Effect of dialyzer membrane materials on survival in chronic hemodialysis patients: results from the annual survey of the Japanese Nationwide Dialysis registry. PLoS One. 2017;12(9):e0184424.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Schulman G. Nutrition in daily hemodialysis. Am J Kidney Dis. 2003;41(3 Suppl 1):S112–5.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Teixeira Nunes F, de Campos G, Xavier de Paula SM, Merhi VA, Portero-McLellan KC, da Motta DG, et al. Dialysis adequacy and nutritional status of hemodialysis patients. Hemodial Int. 2008;12(1):45–51.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Azar AT, Wahba K, Mohamed AS, Massoud WA. Association between dialysis dose improvement and nutritional status among hemodialysis patients. Am J Nephrol. 2007;27(2):113–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Blumenkrantz MJ, Gahl GM, Kopple JD, Kamdar AV, Jones MR, Kessel M, et al. Protein losses during peritoneal dialysis. Kidney Int. 1981;19(4):593–602.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Ikizler TA, Flakoll PJ, Parker RA, Hakim RM. Amino acid and albumin losses during hemodialysis. Kidney Int. 1994;46(3):830–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kaysen GA, Greene T, Larive B, Mehta RL, Lindsay RM, Depner TA, et al. The effect of frequent hemodialysis on nutrition and body composition: frequent hemodialysis network trial. Kidney Int. 2012;82(1):90–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ikizler TA, Cano NJ, Franch H, Fouque D, Himmelfarb J, Kalantar-Zadeh K, et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013;84(6):1096–107.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rhee CM, You AS, Koontz Parsons T, Tortorici AR, Bross R, St-Jules DE, et al. Effect of high-protein meals during hemodialysis combined with lanthanum carbonate in hypoalbuminemic dialysis patients: findings from the FrEDI randomized controlled trial. Nephrol Dial Transplant. 2017;32(7):1233–43.PubMedPubMedCentralGoogle Scholar
  53. 53.
    de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20(9):2075–84.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Scialla JJ, Appel LJ, Astor BC, Miller ER, Beddhu S, Woodward M, et al. Net endogenous acid production is associated with a faster decline in GFR in African Americans. Kidney Int. 2012;82(1):106–12.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kanda E, Ai M, Kuriyama R, Yoshida M, Shiigai T. Dietary acid intake and kidney disease progression in the elderly. Am J Nephrol. 2014;39(2):145–52.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Banerjee T, Crews DC, Wesson DE, Tilea AM, Saran R, Ríos-Burrows N, et al. High dietary acid load predicts ESRD among adults with CKD. J Am Soc Nephrol. 2015;26(7):1693–700.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Jankowska M, Cobo G, Lindholm B, Stenvinkel P. Inflammation and protein-energy wasting in the uremic milieu. Contrib Nephrol. 2017;191:58–71.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Panichi V, Rizza GM, Paoletti S, Bigazzi R, Aloisi M, Barsotti G, et al. Chronic inflammation and mortality in haemodialysis: effect of different renal replacement therapies. Results from the RISCAVID study. Nephrol Dial Transplant. 2008;23(7):2337–43.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Snaedal S, Qureshi AR, Lund SH, Germanis G, Hylander B, Heimbürger O, et al. Dialysis modality and nutritional status are associated with variability of inflammatory markers. Nephrol Dial Transplant. 2016;31(8):1320–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Khor BH, Narayanan SS, Sahathevan S, Gafor AHA, Daud ZAM, Khosla P, et al. Efficacy of nutritional interventions on inflammatory markers in Haemodialysis patients: a systematic review and limited meta-analysis. Nutrients. 2018;10(4)Google Scholar
  61. 61.
    Jiang S, Xie S, Lv D, Wang P, He H, Zhang T, et al. Alteration of the gut microbiota in Chinese population with chronic kidney disease. Sci Rep. 2017;7(1):2870.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Vaziri ND, Zhao YY, Pahl MV. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant. 2016;31(5):737–46.PubMedCrossRefGoogle Scholar
  63. 63.
    Mafra D, Lobo JC, Barros AF, Koppe L, Vaziri ND, Fouque D. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol. 2014;9(3):399–410.PubMedCrossRefGoogle Scholar
  64. 64.
    Stompór T, Hubalewska-Hola A, Staszczak A, Sulowicz W, Huszno B, Szybinski Z. Association between gastric emptying rate and nutritional status in patients treated with continuous ambulatory peritoneal dialysis. Perit Dial Int. 2002;22(4):500–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Strid H, Simrén M, Stotzer PO, Abrahamsson H, Björnsson ES. Delay in gastric emptying in patients with chronic renal failure. Scand J Gastroenterol. 2004;39(6):516–20.PubMedCrossRefGoogle Scholar
  66. 66.
    Ross EA, Koo LC. Improved nutrition after the detection and treatment of occult gastroparesis in nondiabetic dialysis patients. Am J Kidney Dis. 1998;31(1):62–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Levey AS, Adler S, Caggiula AW, England BK, Greene T, Hunsicker LG, et al. Effects of dietary protein restriction on the progression of advanced renal disease in the modification of diet in renal disease study. Am J Kidney Dis. 1996;27(5):652–63.PubMedCrossRefGoogle Scholar
  68. 68.
    Menon V, Kopple JD, Wang X, Beck GJ, Collins AJ, Kusek JW, et al. Effect of a very low-protein diet on outcomes: long-term follow-up of the modification of diet in renal disease (MDRD) study. Am J Kidney Dis. 2009;53(2):208–17.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rughooputh MS, Zeng R, Yao Y. Protein diet restriction slows chronic kidney disease progression in non-diabetic and in type 1 diabetic patients, but not in type 2 diabetic patients: a meta-analysis of randomized controlled trials using glomerular filtration rate as a surrogate. PLoS One. 2015;10(12):e0145505.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Fouque D, Laville M. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst Rev. 2009;3:CD001892.Google Scholar
  71. 71.
    O'Hare AM, Choi AI, Bertenthal D, Bacchetti P, Garg AX, Kaufman JS, et al. Age affects outcomes in chronic kidney disease. J Am Soc Nephrol. 2007;18(10):2758–65.PubMedCrossRefGoogle Scholar
  72. 72.
    Nephrology JSo. Dietary recommendations for chronic kidney disease, 2014. Nihon Jinzo Gakkai Shi. 2014;56(5):553–99.Google Scholar
  73. 73.
    KDIGO. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3(Supplements 1):1–150.Google Scholar
  74. 74.
    Kopple JD. National kidney foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2001;37(1 Suppl 2):S66–70.PubMedCrossRefGoogle Scholar
  75. 75.
    Ryu S, Chang Y, Woo HY, Kim SG, Kim DI, Kim WS, et al. Changes in body weight predict CKD in healthy men. J Am Soc Nephrol. 2008;19(9):1798–805.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tokashiki K, Tozawa M, Iseki C, Kohagura K, Kinjo K, Takishita S, et al. Decreased body mass index as an independent risk factor for developing chronic kidney disease. Clin Exp Nephrol. 2009;13(1):55–60.PubMedCrossRefGoogle Scholar
  77. 77.
    Ohkawa S, Kaizu Y, Odamaki M, Ikegaya N, Hibi I, Miyaji K, et al. Optimum dietary protein requirement in nondiabetic maintenance hemodialysis patients. Am J Kidney Dis. 2004;43(3):454–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Ichikawa Y, Hiramatsu F, Hamada H, Sakai A, Hara K, Kogirima M, et al. Effect of protein and energy intakes on body composition in non-diabetic maintenance-hemodialysis patients. J Nutr Sci Vitaminol (Tokyo). 2007;53(5):410–8.CrossRefGoogle Scholar
  79. 79.
    Ravel VA, Molnar MZ, Streja E, Kim JC, Victoroff A, Jing J, et al. Low protein nitrogen appearance as a surrogate of low dietary protein intake is associated with higher all-cause mortality in maintenance hemodialysis patients. J Nutr. 2013;143(7):1084–92.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Tomayko EJ, Kistler BM, Fitschen PJ, Wilund KR. Intradialytic protein supplementation reduces inflammation and improves physical function in maintenance hemodialysis patients. J Ren Nutr. 2015;25(3):276–83.PubMedCrossRefGoogle Scholar
  81. 81.
    Sezer S, Bal Z, Tutal E, Uyar ME, Acar NO. Long-term oral nutrition supplementation improves outcomes in malnourished patients with chronic kidney disease on hemodialysis. JPEN J Parenter Enteral Nutr. 2014;38(8):960–5.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Weiner DE, Tighiouart H, Ladik V, Meyer KB, Zager PG, Johnson DS. Oral intradialytic nutritional supplement use and mortality in hemodialysis patients. Am J Kidney Dis. 2014;63(2):276–85.PubMedCrossRefGoogle Scholar
  83. 83.
    Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J Physiol. 2013;591(11):2911–23.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Nair KS, Schwartz RG, Welle S. Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am J Phys. 1992;263(5 Pt 1):E928–34.Google Scholar
  85. 85.
    Børsheim E, Bui QU, Tissier S, Kobayashi H, Ferrando AA, Wolfe RR. Effect of amino acid supplementation on muscle mass, strength and physical function in elderly. Clin Nutr. 2008;27(2):189–95.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Dillon EL, Sheffield-Moore M, Paddon-Jones D, Gilkison C, Sanford AP, Casperson SL, et al. Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J Clin Endocrinol Metab. 2009;94(5):1630–7.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Verhoeven S, Vanschoonbeek K, Verdijk LB, Koopman R, Wodzig WK, Dendale P, et al. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr. 2009;89(5):1468–75.PubMedCrossRefGoogle Scholar
  88. 88.
    Fornasini G, Upton RN, Evans AM. A pharmacokinetic model for L-carnitine in patients receiving haemodialysis. Br J Clin Pharmacol. 2007;64(3):335–45.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ahmad S, Robertson HT, Golper TA, Wolfson M, Kurtin P, Katz LA, et al. Multicenter trial of L-carnitine in maintenance hemodialysis patients. II. Clinical and biochemical effects. Kidney Int. 1990;38(5):912–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Higuchi T, Abe M, Yamazaki T, Okawa E, Ando H, Hotta S, et al. Levocarnitine improves cardiac function in hemodialysis patients with left ventricular hypertrophy: a randomized controlled trial. Am J Kidney Dis. 2016;67(2):260–70.PubMedCrossRefGoogle Scholar
  91. 91.
    Katalinic L, Krtalic B, Jelakovic B, Basic-Jukic N. The unexpected effects of L-carnitine supplementation on lipid metabolism in hemodialysis patients. Kidney Blood Press Res. 2018;43(4):1113–20.PubMedCrossRefGoogle Scholar
  92. 92.
    Kanda E, Erickson K, Bond TC, Krisher J, McClellan WM. Hemodialysis treatment center early mortality rates for incident hemodialysis patients are associated with the quality of care prior to starting but not following onset of Dialysis. Am J Nephrol. 2011;33(5):390–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Castaneda C, Gordon PL, Uhlin KL, Levey AS, Kehayias JJ, Dwyer JT, et al. Resistance training to counteract the catabolism of a low-protein diet in patients with chronic renal insufficiency. A randomized, controlled trial. Ann Intern Med. 2001;135(11):965–76.PubMedCrossRefGoogle Scholar
  94. 94.
    Balakrishnan VS, Rao M, Menon V, Gordon PL, Pilichowska M, Castaneda F, et al. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(6):996–1002.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Howden EJ, Leano R, Petchey W, Coombes JS, Isbel NM, Marwick TH. Effects of exercise and lifestyle intervention on cardiovascular function in CKD. Clin J Am Soc Nephrol. 2013;8(9):1494–501.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Chen IR, Wang SM, Liang CC, Kuo HL, Chang CT, Liu JH, et al. Association of walking with survival and RRT among patients with CKD stages 3-5. Clin J Am Soc Nephrol. 2014;9(7):1183–9.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Watson EL, Greening NJ, Viana JL, Aulakh J, Bodicoat DH, Barratt J, et al. Progressive resistance exercise training in CKD: a feasibility study. Am J Kidney Dis. 2015;66(2):249–57.PubMedCrossRefGoogle Scholar
  98. 98.
    Castaneda C, Gordon PL, Parker RC, Uhlin KL, Roubenoff R, Levey AS. Resistance training to reduce the malnutrition-inflammation complex syndrome of chronic kidney disease. Am J Kidney Dis. 2004;43(4):607–16.PubMedCrossRefGoogle Scholar
  99. 99.
    Heiwe S, Jacobson SH. Exercise training in adults with CKD: a systematic review and meta-analysis. Am J Kidney Dis. 2014;64(3):383–93.CrossRefGoogle Scholar
  100. 100.
    Majchrzak KM, Pupim LB, Flakoll PJ, Ikizler TA. Resistance exercise augments the acute anabolic effects of intradialytic oral nutritional supplementation. Nephrol Dial Transplant. 2008;23(4):1362–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Sheng K, Zhang P, Chen L, Cheng J, Wu C, Chen J. Intradialytic exercise in hemodialysis patients: a systematic review and meta-analysis. Am J Nephrol. 2014;40(5):478–90.CrossRefGoogle Scholar
  102. 102.
    Dong J, Sundell MB, Pupim LB, Wu P, Shintani A, Ikizler TA. The effect of resistance exercise to augment long-term benefits of intradialytic oral nutritional supplementation in chronic hemodialysis patients. J Ren Nutr. 2011;21(2):149–59.PubMedCrossRefGoogle Scholar
  103. 103.
    Hristea D, Deschamps T, Paris A, Lefrançois G, Collet V, Savoiu C, et al. Combining intra-dialytic exercise and nutritional supplementation in malnourished older haemodialysis patients: towards better quality of life and autonomy. Nephrology (Carlton). 2016;21(9):785–90.CrossRefGoogle Scholar
  104. 104.
    Bohm C, Stewart K, Onyskie-Marcus J, Esliger D, Kriellaars D, Rigatto C. Effects of intradialytic cycling compared with pedometry on physical function in chronic outpatient hemodialysis: a prospective randomized trial. Nephrol Dial Transplant. 2014;29(10):1947–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Eiichiro Kanda
    • 1
  1. 1.Medical ScienceKawasaki Medical SchoolKurashikiJapan

Personalised recommendations