Advertisement

Frailty and Cognitive Impairment in Chronic Kidney Disease

  • Kazuhiko TsuruyaEmail author
Chapter
  • 27 Downloads

Abstract

Recently, accumulating evidence has been published on cognitive impairment in patients with chronic kidney disease (CKD). It has been shown that brain atrophy is prominent in patients receiving hemodialysis or peritoneal dialysis, and the significant association between brain atrophy and frequency of rapid decline in blood pressure during the hemodialysis session was documented. Recently, we reported a close association between gray matter atrophy and executive dysfunction in CKD patients, suggesting the importance of preventing brain atrophy for the prevention of cognitive impairment. It has been reported that frailty, a common geriatric syndrome that embodies an elevated risk of catastrophic declines in health and function among older adults, is associated with poor cognitive function, cognitive decline, and dementia in older adults with and without CKD. A number of traditional and nontraditional vascular factors and nonvascular factors are strongly implicated in the pathophysiological relationship among CKD, cognitive decline, and frailty. Several recent randomized controlled trials of elderly individuals without dementia have demonstrated that exercise training improved cognitive function with an increase in brain volume. Experimental studies have shown that exercise decreased the amount of β-amyloid (Aβ) oligomers in addition to depositing Aβ in the brain. Alternatively, some other studies have demonstrated that physical training increases angiogenesis, synaptogenesis, and neurogenesis, especially in hippocampus and in gyrus dentatus and initiates the upregulation of numerous neurotrophic factors such as BDNF and IGF-1 in the brain, especially in hippocampus. Accordingly, physical exercise training should be implemented to prevent and treat frailty and cognitive impairment in the elderly CKD patients.

Keywords

Albuminuria Anemia Brain atrophy BDNF Cognitive impairment Exercise training Frailty Oxidative stress Renin-angiotensin system Uremic toxin 

References

  1. 1.
    Kurella Tamura M, Wadley V, Yaffe K, McClure LA, Howard G, Go R, et al. Kidney function and cognitive impairment in US adults: the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study. Am J Kidney Dis. 2008;52:227–34.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bugnicourt JM, Godefroy O, Chillon JM, Choukroun G, Massy ZA. Cognitive disorders and dementia in CKD: the neglected kidney-brain axis. J Am Soc Nephrol. 2013;24:353–63.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Fukunishi I, Kitaoka T, Shirai T, Kino K, Kanematsu E, Sato Y. Psychiatric disorders among patients undergoing hemodialysis therapy. Nephron. 2002;91:344–7.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Madero M, Gul A, Sarnak MJ. Cognitive function in chronic kidney disease. Semin Dial. 2008;21:29–37.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Yoshimitsu T, Hirakata H, Fujii K, Kanai H, Hirakata E, Higashi H, et al. Cerebral ischemia as a causative mechanism for rapid progression of brain atrophy in chronic hemodialysis patients. Clin Nephrol. 2000;53:445–51.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Kamata T, Hishida A, Takita T, Sawada K, Ikegaya N, Maruyama Y, et al. Morphologic abnormalities in the brain of chronically hemodialyzed patients without cerebrovascular disease. Am J Nephrol. 2000;20:27–31.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Mizumasa T, Hirakata H, Yoshimitsu T, Hirakata E, Kubo M, Kashiwagi M, et al. Dialysis-related hypotension as a cause of progressive frontal lobe atrophy in chronic hemodialysis patients: a 3-year prospective study. Nephron Clin Pract. 2004;97:c23–30.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Taki Y, Goto R, Evans A, Zijdenbos A, Neelin P, Lerch J, et al. Voxel-based morphometry of human brain with age and cerebrovascular risk factors. Neurobiol Aging. 2004;25:455–63.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Tsuruya K, Yoshida H, Kuroki Y, Nagata M, Mizumasa T, Mitsuiki K, et al. Brain atrophy in peritoneal dialysis and CKD stages 3-5: a cross-sectional and longitudinal study. Am J Kidney Dis. 2015;65:312–21.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tsuruya K, Yoshida H, Haruyama N, Fujisaki K, Hirakata H, Kitazono T. Clinical significance of fronto-temporal gray matter atrophy in executive dysfunction in patients with chronic kidney disease: the VCOHP study. PLoS One. 2015;10:e0143706.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Boone KB, Miller BL, Lesser IM, Mehringer CM, Hill-Gutierrez E, Goldberg MA, et al. Neuropsychological correlates of white-matter lesions in healthy elderly subjects. A threshold effect. Arch Neurol. 1992;49:549–54.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Pereira AA, Weiner DE, Scott T, Sarnak MJ. Cognitive function in dialysis patients. Am J Kidney Dis. 2005;45:448–62.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Levin A. Clinical epidemiology of cardiovascular disease in chronic kidney disease prior to dialysis. Semin Dial. 2003;16:101–5.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Levey AS, Astor BC, Stevens LA, Coresh J. Chronic kidney disease, diabetes, and hypertension: what’s in a name? Kidney Int. 2010;78:19–22.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kalyani RR, Saudek CD, Brancati FL, Selvin E. Association of diabetes, comorbidities, and A1C with functional disability in older adults: results from the National Health and Nutrition Examination Survey (NHANES), 1999–2006. Diabetes Care. 2010;33:1055–60.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Knopman D, Boland LL, Mosley T, Howard G, Liao D, Szklo M, et al. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology. 2001;56:42–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rosano C, Longstreth WT Jr, Boudreau R, Taylor CA, Du Y, Kuller LH, et al. High blood pressure accelerates gait slowing in well-functioning older adults over 18-years of follow-up. J Am Geriatr Soc. 2011;59:390–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Oishi E, Ohara T, Sakata S, Fukuhara M, Hata J, Yoshida D, et al. Day-to-day blood pressure variability and risk of dementia in a general japanese elderly population: the Hisayama study. Circulation. 2017;136:516–25.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ohara T, Ninomiya T, Hata J, Ozawa M, Yoshida D, Mukai N, et al. Midlife and late-life smoking and risk of dementia in the community: the Hisayama study. J Am Geriatr Soc. 2015;63:2332–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ohara T, Doi Y, Ninomiya T, Hirakawa Y, Hata J, Iwaki T, et al. Glucose tolerance status and risk of dementia in the community: the Hisayama study. Neurology. 2011;77:1126–34.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ninomiya T, Ohara T, Hirakawa Y, Yoshida D, Doi Y, Hata J, et al. Midlife and late-life blood pressure and dementia in Japanese elderly: the Hisayama study. Hypertension. 2011;58:22–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Odden MC, Whooley MA, Shlipak MG. Association of chronic kidney disease and anemia with physical capacity: the heart and soul study. J Am Soc Nephrol. 2004;15:2908–15.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    La Rue A, Koehler KM, Wayne SJ, Chiulli SJ, Haaland KY, Garry PJ. Nutritional status and cognitive functioning in a normally aging sample: a 6-y reassessment. Am J Clin Nutr. 1997;65:20–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ng TP, Niti M, Feng L, Kua EH, Yap KB. Albumin, apolipoprotein E-epsilon4 and cognitive decline in community-dwelling Chinese older adults. J Am Geriatr Soc. 2009;57:101–6.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Knight EL, Ofsthun N, Teng M, Lazarus JM, Curhan GC. The association between mental health, physical function, and hemodialysis mortality. Kidney Int. 2003;63:1843–51.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ng TP, Niti M, Chiam PC, Kua EH. Ethnic and educational differences in cognitive test performance on mini-mental state examination in Asians. Am J Geriatr Psychiatr. 2007;15:130–9.CrossRefGoogle Scholar
  27. 27.
    Niti M, Yap KB, Kua EH, Tan CH, Ng TP. Physical, social and productive leisure activities, cognitive decline and interaction with APOE-epsilon 4 genotype in Chinese older adults. Int Psychogeriatr. 2008;20:237–51.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ng TP, Niti M, Zaw MH, Kua EH. Depressive symptoms and incident cognitive impairment in cognitively well-functioning older men and women. J Am Geriatr Soc. 2009;57:1058–63.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Penninx BW, Guralnik JM, Ferrucci L, Simonsick EM, Deeg DJ, Wallace RB. Depressive symptoms and physical decline in community-dwelling older persons. JAMA. 1998;279:1720–6.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kendrick J, Chonchol MB. Nontraditional risk factors for cardiovascular disease in patients with chronic kidney disease. Nat Clin Pract Nephrol. 2008;4:672–81.PubMedCrossRefGoogle Scholar
  31. 31.
    Murray AM. Cognitive impairment in the aging dialysis and chronic kidney disease populations: an occult burden. Adv Chronic Kidney Dis. 2008;15:123–32.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Penninx BW, Pahor M, Cesari M, Corsi AM, Woodman RC, Bandinelli S, et al. Anemia is associated with disability and decreased physical performance and muscle strength in the elderly. J Am Geriatr Soc. 2004;52:719–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Fried LF, Lee JS, Shlipak M, Chertow GM, Green C, Ding J, et al. Chronic kidney disease and functional limitation in older people: health, aging and body composition study. J Am Geriatr Soc. 2006;54:750–6.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hirakata H, Yao H, Osato S, Ibayashi S, Onoyama K, Otsuka M, et al. CBF and oxygen metabolism in hemodialysis patients: effects of anemia correction with recombinant human EPO. Am J Phys. 1992;262:F737–43.Google Scholar
  35. 35.
    Kanai H, Hirakata H, Nakane H, Fujii K, Hirakata E, Ibayashi S, et al. Depressed cerebral oxygen metabolism in patients with chronic renal failure: a positron emission tomography study. Am J Kidney Dis. 2001;38:S129–33.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kuwabara Y, Sasaki M, Hirakata H, Koga H, Nakagawa M, Chen T, et al. Cerebral blood flow and vasodilatory capacity in anemia secondary to chronic renal failure. Kidney Int. 2002;61:564–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Temple RM, Langan SJ, Deary IJ, Winney RJ. Recombinant erythropoietin improves cognitive function in chronic haemodialysis patients. Nephrol Dial Transplant. 1992;7:240–5.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Grimm G, Stockenhuber F, Schneeweiss B, Madl C, Zeitlhofer J, Schneider B. Improvement of brain function in hemodialysis patients treated with erythropoietin. Kidney Int. 1990;38:480–6.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Takae K, Hata J, Ohara T, Yoshida D, Shibata M, Mukai N, et al. Albuminuria increases the risks for both Alzheimer disease and vascular dementia in community-dwelling Japanese elderly: the Hisayama study. J Am Heart Assoc. 2018;7:e006693.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fujisaki K, Tsuruya K, Yamato M, Toyonaga J, Noguchi H, Nakano T, et al. Cerebral oxidative stress induces spatial working memory dysfunction in uremic mice: neuroprotective effect of tempol. Nephrol Dial Transplant. 2014;29:529–38.PubMedCrossRefGoogle Scholar
  41. 41.
    Haruyama N, Fujisaki K, Yamato M, Eriguchi M, Noguchi H, Torisu K, et al. Improvement in spatial memory dysfunction by telmisartan through reduction of brain angiotensin II and oxidative stress in experimental uremic mice. Life Sci. 2014;113:55–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhuang S, Wang HF, Wang X, Li J, Xing CM. The association of renin-angiotensin system blockade use with the risks of cognitive impairment of aging and Alzheimer’s disease: a meta-analysis. J Clin Neurosci. 2016;33:32–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Jassal SV, Roscoe J, LeBlanc D, Devins GM, Rourke S. Differential impairment of psychomotor efficiency and processing speed in patients with chronic kidney disease. Int Urol Nephrol. 2008;40:849–54.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ok E, Duman S, Asci G, Tumuklu M, Onen Sertoz O, Kayikcioglu M, et al. Comparison of 4- and 8-h dialysis sessions in thrice-weekly in-centre haemodialysis: a prospective, case-controlled study. Nephrol Dial Transplant. 2011;26:1287–96.PubMedCrossRefGoogle Scholar
  45. 45.
    FHN Trial Group, Chertow GM, Levin NW, Beck GJ, Depner TA, Eggers PW, et al. In-center hemodialysis six times per week versus three times per week. N Engl J Med. 2010;363:2287–300.CrossRefGoogle Scholar
  46. 46.
    Kurella Tamura M, Unruh ML, Nissenson AR, Larive B, Eggers PW, Gassman J, et al. Effect of more frequent hemodialysis on cognitive function in the frequent hemodialysis network trials. Am J Kidney Dis. 2013;61:228–37.PubMedCrossRefGoogle Scholar
  47. 47.
    Liabeuf S, Desjardins L, Massy ZA, Brazier F, Westeel PF, Mazouz H, et al. Levels of indoxyl sulfate in kidney transplant patients, and the relationship with hard outcomes. Circ J. 2016;80:722–30.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kaya Y, Ozturkeri OA, Benli US, Colak T. Evaluation of the cognitive functions in patients with chronic renal failure before and after renal transplantation. Acta Neurol Belg. 2013;113:147–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Harciarek M, Biedunkiewicz B, Lichodziejewska-Niemierko M, Debska-Slizien A, Rutkowski B. Continuous cognitive improvement 1 year following successful kidney transplant. Kidney Int. 2011;79:1353–60.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Radic J, Ljutic D, Radic M, Kovacic V, Dodig-Curkovic K, Sain M. Kidney transplantation improves cognitive and psychomotor functions in adult hemodialysis patients. Am J Nephrol. 2011;34:399–406.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Chhabra YK, Sood S, Rathi O, Mahajan S. Effect of renal transplantation on cognitive function in hemodialysis patients: a longitudinal study. Int Urol Nephrol. 2017;49:2071–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kramer L, Madl C, Stockenhuber F, Yeganehfar W, Eisenhuber E, Derfler K, et al. Beneficial effect of renal transplantation on cognitive brain function. Kidney Int. 1996;49:833–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Griva K, Hansraj S, Thompson D, Jayasena D, Davenport A, Harrison M, et al. Neuropsychological performance after kidney transplantation: a comparison between transplant types and in relation to dialysis and normative data. Nephrol Dial Transplant. 2004;19:1866–74.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Harciarek M, Biedunkiewicz B, Lichodziejewska-Niemierko M, Debska-Slizien A, Rutkowski B. Cognitive performance before and after kidney transplantation: a prospective controlled study of adequately dialyzed patients with end-stage renal disease. J Int Neuropsychol Soc. 2009;15:684–94.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Griva K, Thompson D, Jayasena D, Davenport A, Harrison M, Newman SP. Cognitive functioning pre- to post-kidney transplantation—a prospective study. Nephrol Dial Transplant. 2006;21:3275–82.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Wolfgram DF, Szabo A, Murray AM, Whittle J. Risk of dementia in peritoneal dialysis patients compared with hemodialysis patients. Perit Dial Int. 2015;35:189–98.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    O’Lone E, Connors M, Masson P, Wu S, Kelly PJ, Gillespie D, et al. Cognition in people with end-stage kidney disease treated with hemodialysis: a systematic review and meta-analysis. Am J Kidney Dis. 2016;67:925–35.CrossRefGoogle Scholar
  58. 58.
    Tian X, Guo X, Xia X, Yu H, Li X, Jiang A. The comparison of cognitive function and risk of dementia in CKD patients under peritoneal dialysis and hemodialysis: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2019;98:e14390.CrossRefGoogle Scholar
  59. 59.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–56.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Brigola AG, Rossetti ES, Dos Santos BR, Neri AL, Zazzetta MS, Inouye K, et al. Relationship between cognition and frailty in elderly: a systematic review. Dement Neuropsychol. 2015;9:110–9.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Furtado GE, Caldo A, Rieping T, Filaire E, Hogervorst E, Teixeira AMB, et al. Physical frailty and cognitive status over-60 age populations: a systematic review with meta-analysis. Arch Gerontol Geriatr. 2018;78:240–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Borges MK, Canevelli M, Cesari M, Aprahamian I. Frailty as a predictor of cognitive disorders: a systematic review and meta-analysis. Front Med (Lausanne). 2019;6:26.CrossRefGoogle Scholar
  63. 63.
    Kallman DA, Plato CC, Tobin JD. The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. J Gerontol. 1990;45:M82–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Rantanen T, Era P, Heikkinen E. Maximal isometric strength and mobility among 75-year-old men and women. Age Ageing. 1994;23:132–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Syddall HE, Westbury LD, Dodds R, Dennison E, Cooper C, Sayer AA. Mortality in the Hertfordshire ageing study: association with level and loss of hand grip strength in later life. Age Ageing. 2017;46:407–12.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Dodds RM, Syddall HE, Cooper R, Kuh D, Cooper C, Sayer AA. Global variation in grip strength: a systematic review and meta-analysis of normative data. Age Ageing. 2016;45:209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Leong DP, Teo KK. Predicting cardiovascular disease from handgrip strength: the potential clinical implications. Expert Rev Cardiovasc Ther. 2015;13:1277–9.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Hatabe Y, Shibata M, Ohara T, Oishi E, Yoshida D, Honda T, et al. Decline in handgrip strength from midlife to late-life is associated with dementia in a Japanese community: the Hisayama Study. J Epidemiol. 2018.  https://doi.org/10.2188/jea.JE20180137.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Otobe Y, Hiraki K, Hotta C, Nishizawa H, Izawa KP, Taki Y, et al. Mild cognitive impairment in older adults with pre-dialysis patients with chronic kidney disease: prevalence and association with physical function. Nephrology (Carlton). 2019;24:50–5.CrossRefGoogle Scholar
  70. 70.
    Otobe Y, Hiraki K, Hotta C, Izawa KP, Sakurada T, Shibagaki Y. The impact of the combination of kidney and physical function on cognitive decline over 2 years in older adults with pre-dialysis chronic kidney disease. Clin Exp Nephrol. 2019;23:756–62.CrossRefGoogle Scholar
  71. 71.
    Coppolino G, Bolignano D, Gareri P, Ruberto C, Andreucci M, Ruotolo G, et al. Kidney function and cognitive decline in frail elderly: two faces of the same coin? Int Urol Nephrol. 2018;50:1505–10.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    McAdams-DeMarco MA, Tan J, Salter ML, Gross A, Meoni LA, Jaar BG, et al. Frailty and cognitive function in incident hemodialysis patients. Clin J Am Soc Nephrol. 2015;10:2181–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Song MK, Ward SE, Bair E, Weiner LJ, Bridgman JC, Hladik GA, et al. Patient-reported cognitive functioning and daily functioning in chronic dialysis patients. Hemodial Int. 2015;19:90–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Yi C, Lin J, Cao P, Chen J, Zhou T, Yang R, et al. Prevalence and prognosis of coexisting frailty and cognitive impairment in patients on continuous ambulatory peritoneal dialysis. Sci Rep. 2018;8:17305.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Chu NM, Gross AL, Shaffer AA, Haugen CE, Norman SP, Xue QL, et al. Frailty and changes in cognitive function after kidney transplantation. J Am Soc Nephrol. 2019;30:336–45.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Feng L, Yap KB, Yeoh LY, Ng TP. Kidney function and cognitive and functional decline in elderly adults: findings from the Singapore longitudinal aging study. J Am Geriatr Soc. 2012;60:1208–14.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61:1166–70.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA. 2011;108:3017–22.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Shimada H, Makizako H, Doi T, Park H, Tsutsumimoto K, Verghese J, et al. Effects of combined physical and cognitive exercises on cognition and mobility in patients with mild cognitive impairment: a randomized clinical trial. J Am Med Dir Assoc. 2018;19:584–91.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Liang KY, Mintun MA, Fagan AM, Goate AM, Bugg JM, Holtzman DM, et al. Exercise and Alzheimer’s disease biomarkers in cognitively normal older adults. Ann Neurol. 2010;68:311–8.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Vaynman S, Gomez-Pinilla F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res. 2006;84:699–715.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30:464–72.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96:13427–31.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266–70.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Clow C, Jasmin BJ. Brain-derived neurotrophic factor regulates satellite cell differentiation and skeltal muscle regeneration. Mol Biol Cell. 2010;21:2182–90.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zoladz JA, Pilc A. The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. J Physiol Pharmacol. 2010;61:533–41.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem. 2002;9:224–37.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 2001;21:1628–34.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience. 2006;140:823–33.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Carro E, Nunez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci. 2000;20:2926–33.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Kishimoto H, Ohara T, Hata J, Ninomiya T, Yoshida D, Mukai N, et al. The long-term association between physical activity and risk of dementia in the community: the Hisayama study. Eur J Epidemiol. 2016;31:267–74.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc. 2011;86:876–84.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Hayes SM, Alosco ML, Forman DE. The effects of aerobic exercise on cognitive and neural decline in aging and cardiovascular disease. Curr Geriatr Rep. 2014;3:282–90.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Smith JC, Nielson KA, Woodard JL, Seidenberg M, Verber MD, Durgerian S, et al. Does physical activity influence semantic memory activation in amnestic mild cognitive impairment? Psychiatry Res. 2011;193:60–2.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ruscheweyh R, Willemer C, Kruger K, Duning T, Warnecke T, Sommer J, et al. Physical activity and memory functions: an interventional study. Neurobiol Aging. 2011;32:1304–19.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–9.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Nagamatsu LS, Chan A, Davis JC, Beattie BL, Graf P, Voss MW, et al. Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. J Aging Res. 2013;2013:861893.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Kirk-Sanchez NJ, McGough EL. Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging. 2014;9:51–62.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain iImmun. 2013;28:90–9.CrossRefGoogle Scholar
  100. 100.
    Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci USA. 2004;101:3316–21.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Barnes DE, Santos-Modesitt W, Poelke G, Kramer AF, Castro C, Middleton LE, et al. The Mental Activity and eXercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults. JAMA Intern Med. 2013;173:797–804.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72:239–52.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300:1027–37.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Christofoletti G, Oliani MM, Gobbi S, Stella F, Bucken Gobbi LT, Renato Canineu P. A controlled clinical trial on the effects of motor intervention on balance and cognition in institutionalized elderly patients with dementia. Clin Rehabil. 2008;22:618–26.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Williamson JD, Espeland M, Kritchevsky SB, Newman AB, King AC, Pahor M, et al. Changes in cognitive function in a randomized trial of physical activity: results of the lifestyle interventions and independence for elders pilot study. J Gerontol A Biol Sci Med Sci. 2009;64:688–94.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Varela S, Ayan C, Cancela JM, Martin V. Effects of two different intensities of aerobic exercise on elderly people with mild cognitive impairment: a randomized pilot study. Clin Rehabil. 2012;26:442–50.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Lam LC, Chan WC, Leung T, Fung AW, Leung EM. Would older adults with mild cognitive impairment adhere to and benefit from a structured lifestyle activity intervention to enhance cognition?: a cluster randomized controlled trial. PLoS One. 2015;10:e0118173.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Cai H, Li G, Hua S, Liu Y, Chen L. Effect of exercise on cognitive function in chronic disease patients: a meta-analysis and systematic review of randomized controlled trials. Clin Interv Aging. 2017;12:773–83.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med. 2018;52:154–60.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Parsons TL, Toffelmire EB, King-VanVlack CE. Exercise training during hemodialysis improves dialysis efficacy and physical performance. Arch Phys Med Rehabil. 2006;87:680–7.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Kaltsatou A, Grigoriou SS, Karatzaferi C, Giannaki CD, Stefanidis I, Sakkas GK. Cognitive function and exercise training for chronic renal disease patients: a literature review. J Bodyw Mov Ther. 2015;19:509–15.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Martins CT, Ramos GS, Guaraldo SA, Uezima CB, Martins JP, Ribeiro Junior E. Comparison of cognitive function between patients on chronic hemodialysis who carry out assisted physical activity and inactive ones. J Bras Nefrol. 2011;33:27–30.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Manfredini F, Mallamaci F, D’Arrigo G, Baggetta R, Bolignano D, Torino C, et al. Exercise in patients on dialysis: a multicenter randomized clinical trial. J Am Soc Nephrol. 2017;28:1259–68.CrossRefGoogle Scholar
  114. 114.
    Baggetta R, D’Arrigo G, Torino C, ElHafeez SA, Manfredini F, Mallamaci F, et al. Effect of a home based, low intensity, physical exercise program in older adults dialysis patients: a secondary analysis of the EXCITE trial. BMC Geriatr. 2018;18:248.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    McAdams-DeMarco MA, Konel J, Warsame F, Ying H, Gonzalez Fernandez M, Carlson MC, et al. Intradialytic cognitive and exercise training may preserve cognitive function. Kidney Int Rep. 2018;3:81–8.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Stringuetta Belik F, Oliveira ESVR, Braga GP, Bazan R, Perez Vogt B, Costa Teixeira Caramori J, et al. Influence of intradialytic aerobic training in cerebral blood flow and cognitive function in patients with chronic kidney disease: a pilot randomized controlled trial. Nephron. 2018;140:9–17.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of NephrologyNara Medical UniversityKashiharaJapan

Personalised recommendations