Advertisement

Pharmacological Intervention for Sarcopenia in Chronic Kidney Disease

  • Kunihiro SakumaEmail author
  • Akihiko Yamaguchi
Chapter
  • 26 Downloads

Abstract

Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality, leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and often frailty. Chronic kidney disease (CKD) is characterized by the gradual loss of renal function over a period of months to years. CKD is a catabolic state, leading to renal sarcopenia. This chapter focuses on the recent advances of pharmacological approaches for attenuating normal and CKD-induced sarcopenia. A myostatin-inhibiting antibody is the most important candidate to prevent normal sarcopenia in humans, but is needed for time to determine the effect for CKD-induced sarcopenia. Although treatment with ghrelin seems to be applicable for both types of sarcopenia in humans, further validation of this trial is necessary by increasing the sample size, varying the range of doses during treatment, and observing other outcomes. Supplementation with ursolic acid is also an intriguing candidate to combat normal and CKD-induced sarcopenia, although further systematic and fundamental research is needed for this treatment on humans.

Keywords

Sarcopenia CKD Myostatin Ghrelin Ursolic acid 

Notes

Acknowledgements

This work was supported by a research Grant-in-Aid for Scientific Research C (No. 17 K01755) from the Ministry of Education, Culture, Sports, and Science and Technology of Japan.

Conflict of Interest

Kunihiro Sakuma and Akihiko Yamaguchi declare that they have no conflict of interest.

References

  1. 1.
    von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle. 2010;1:129–33.CrossRefGoogle Scholar
  2. 2.
    Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80:1258–70.PubMedCrossRefGoogle Scholar
  3. 3.
    Romagmnami P, Remuzzi G, Glassock R, Levin A, Jager KJ, Tonelli M, Massy Z, Wanner C, Anders HJ. Chronic kidney disease. Nat Rev Dis Primers. 2017;3:17088.CrossRefGoogle Scholar
  4. 4.
    Moorthi RN, Avin KG. Clinical relevance of sarcopenia in chronic kidney disease. Curr Opin Nephrol Hypertens. 2017;26:219–28.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Yoshida T, Delafontaine P. Mechanisms of cachexia in chronic disease states. Am J Med Sci. 2015;350:250–6.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sakuma K, Aoi W, Yamaguchi A. Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflügers Arch. 2015;467:213–29.PubMedCrossRefGoogle Scholar
  7. 7.
    Sakuma K, Aoi W, Yamaguchi A. Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflügers Arch. 2017;469:573–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M, Loefler S, Kern H, Blaauw B, Friguet B, Bottinelli R, Rudolf R, Sandri M. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep. 2014;8:1509–21.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Jiao J, Demontis F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol. 2017;34:1–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Sakuma K, Kinoshita M, Ito Y, Aizawa M, Aoi W, Yamaguchi A. p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice. J Cachexia Sarcopenia Muscle. 2016;7:204–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Roshanravan B, Gamboa J, Wilund K. Exercise and CKD: skeletal muscle dysfunction and practical application of exercise to prevent and treat physical impairments in CKD. Am J Kidney Dis. 2017;69:837–52.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sakuma K, Yamaguchi A. Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci. 2010;3:90–101.PubMedCrossRefGoogle Scholar
  13. 13.
    Benoit B, Meugnier E, Castelli M, Chanon S, Vieille-Marchiset A, Durand C, Bendridi N, Pesenti S, Monternier PA, Durieux AC, Freyssenet D, Rieusset J, Lefai E, Vidal H, Ruzzin J. Fibroblast growth factor 19 regulates skeletall muscle mass and ameliorates muscle wasting in mice. Nat Med. 2017;23:990–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Yu R, Chen JA, Xu J, Cao J, Wang Y, Thomas SS, Hu Z. Suppression of muscle wasting by the plant-derived compound ursolic acid in a model of chronic kidney disease. J Cachexia Sarcopenia Muscle. 2017;8:327–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Enoki Y, Watanabe H, Arake R, Fujimura R, Ishiodori K, Imafuku T, Nishida K, Sugimoto R, Nagao S, Miyamura S, Ishima Y, Tanaka M, Matsushita K, Komaba H, Fukagawa M, Otagiri M, Maruyama T. Potential therapeutic interventions for chronic kidney disease-associated sarcopenia via indoxyl sulfate-induced mitochondrial dysfunction. J Cachexia Sarcopenia Muscle. 2017;8:735–47.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Fujii C, Miyashita K, Mitsuishi M, Sato M, Fujii K, Inoue H, Hagiwara A, Endo S, Uto A, Ryuzaki M, Nakajima M, Tanaka T, Tamaki M, Muraki A, Kawai T, Itoh H. Treatment of sarcopenia and glucose intolerance through mitochondrial activation by 5-aminolevulinic acid. Sci Rep. 2017;7:4013.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lee SJ. Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol. 2004;20:61–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Carlson ME, Hsu M, Conboy IM. Imbalance between pSmad3 and notch induces CDK inhibitors is old muscle stem cells. Nature. 2008;454:528–32.PubMedCrossRefGoogle Scholar
  19. 19.
    McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G. Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J. 2012;26:2509–21.PubMedCrossRefGoogle Scholar
  20. 20.
    Woodhouse L, Gandhi R, Warden SJ, Poiraudeau S, Myers SL, Benson CT, Hu L, Ahmad QI, Linnemeier P, Gomez EV, Benichou O. A phase 2 randomized study investigating the efficacy and safety of myostatin antibody LY2495655 versus placebo in patients undergoing elective total hip arthroplasty. J Frailty Aging. 2016;5:62–70.PubMedGoogle Scholar
  21. 21.
    Murphy KT, Ryall JG, Snell SM, Nair L, Koopman R, Krasney PA, Ibebunjo C, Holden KS, Loria PM, Salatto CT, Lynch GS. Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. Am J Pathol. 2010;176:2425–34.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Murphy KT, Koopman R, Naim T, Léger B, Trieu J, Ikebunjo C, Lynch GS. Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J. 2010;24:4433–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Campbell C, McMillan HJ, Mah JK, Tarnopolsky M, Selby K, McClure T, Wilson DM, Sherman ML, Escolar D, Attie KM. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: results of a randomized, placebo-controlled clinical trial. Muscle Nerve. 2017;55:458–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Lebrasseur NK, Schelhorn TM, Bernardo BL, Cosgrove PG, Loria PM, Brown TA. Myostatin inhibition enhances the effects on performance and metabolic outcomes in aged mice. J Gerontol Series A Biol Sci Med Sci. 2009;64:940–8.CrossRefGoogle Scholar
  25. 25.
    Becker C, Lord SR, Studenski SA, Warden SJ, Dielding RA, Recknor CP, Hochberg MC, Ferrari SL, Blain H, Binder EF, Rolland Y, Poiraudeau S, Benson CT, Myers SL, Hu L, Ahmad QI, Pacuch KR, Gomez EV, Benichou O, STEADY Group. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol. 2015;3:948–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang D-T, Yang Y-J, Huang R-H, Zhang Z-H, Lin X. Myostatin activates the ubiquitin-proteasome and autophagy-lysosome systems contributing to muscle wasting in chronic kidney disease. Oxidative Med Cell Longev. 2015;2915:684965.Google Scholar
  27. 27.
    Zhang L, Rajan V, Lin E, Hu Z, Han HQ, Zhou X, Song Y, Min H, Wang X, Du J, Mitch WE. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. FASEB J. 2011;25:1653–63.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, McKinlay JB. Age trends in the level of serum testosterone and other hormones in middle-aged men: longituidinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87:589–98.PubMedCrossRefGoogle Scholar
  29. 29.
    Lehtihet M, Hylander B. Semen quality in men with chronic kidney disease and its correlation with chronic kidney disease stages. Andrologia. 2015;47:1103–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Bhasin S, Calof O, Storer TW, Lee ML, Mazer NA, Jasuja R, Montori VM, Gao W, Dalton JT. Drug insight: testosterone and selective androgen receptor modulators as anabolic therapies for physical dysfunction in chronic illness and ageing. Nat Clin Pract Endocrinol Metab. 2006;2:146–59.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bakhshi V, Elliott M, Gentili A, Godschalk M, Mulligan T. Testosterone improves rehabilitation outcomes in ill older men. J Am Geriatr Soc. 2000;48:550–3.PubMedCrossRefGoogle Scholar
  32. 32.
    Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, Lieberman SA, Tipton K, Wolfe RR, Urban RJ. Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab. 2002;282:E601–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Sinha-Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab. 2006;91:3024–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Crawford J, Prado CMM, Ann Johnston M, Gralla RJ, Taylor RP, Hancock ML, Dalton JT. Study design and rationale for the phase 3 clinical development program of enobosarm, a selective androgen receptor modulator, for the prevention and treatment of muscle wasting in cancer patients (POWER trials). Curr Oncol Rep. 2016;18:37.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle. 2011;2:153–61.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Neil D, Clark RV, Magee M, Billiard J, Chan A, Xue Z, Russell A. GSK2881078, a SARM, produces dose-dependent increases in lean mass in healthy older men and women. J Clin Endocrinol Metab. 2018;103:3215–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Supasyndh O, Satirapoj B, Aramwit P, Viroonudomphol D, Chaiprasert A, Thanachatwej V, Vanichakarn S, Kopple JD. Clin J Am Soc Nephrol. 2013;8:271–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kim K-Y, Ku S-K, Lee K-W, Song C-H, An WG. Muscle-protective effects of Schisandrae Fructus extracts in old mice after chronic forced exercise. J Ethnopharmacol. 2018;212:175–87.PubMedCrossRefGoogle Scholar
  39. 39.
    Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan SR, Lillard JW Jr, Taub DD. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest. 2004;114:57–66.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Akamizu T, Kangawa K. Ghrelin for cachexia. J Cachexia Sarcopenia Muscle. 2010;1:169–76.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Nagaya N, Itoh T, Murakami S, Oya H, Uematsu M, Miyatake K, Kangawa K. Treatment of cachexia with ghrelin in patients with COPD. Chest. 2005;128:1187–93.PubMedCrossRefGoogle Scholar
  42. 42.
    Nagaya N, Moriya J, Yasumura Y, Uematsu M, Ono F, Shimizu W, Ueno K, Kitakaze M, Miyatake K, Kangawa K. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation. 2004;110:3674–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Pietra C, Takeda Y, Tazawa-Ogata N, Minami M, Yuanfeng X, Duus EM, Northrup R. Anamorelin HCl (ONO-7643), a novel ghrelin receptor agonist, for the treatment of cancer anorexia-cachexia syndrome: preclinical profile. J Cachexia Sarcopenia Muscle. 2014;5:329–37.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, Fearon KC. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomized, double-blind, phase 3 trials. Lancet Oncol. 2016;17:519–31.PubMedCrossRefGoogle Scholar
  45. 45.
    Bai Y, Hu Y, Zhao Y, Yu X, Xu J, Hua Z, Zho Z. Anamorelin for cancer anorexia-cachexia syndrome: a systematic review and meta-analysis. Support Care Cancer. 2017;25:1651–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Bach MA, Rockwood K, Zetterberg C, Thamsborg G, Hébert R, Devogelaer JP, Christiansen JS, Rizzoli R, Ochsner JL, Beisaw N, Gluck O, Yu L, Schwab T, Farrington J, Taylor AM, Ng J, Fuh V, MK 0677 Hip Fracture Study Group. The effects of MK-0677, an oral growth hormone secretagogue, in patients with hip fracture. J Am Geriatr Soc. 2004;52:516–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Nass R, Gaylinn BD, Thorner MO. The ghrelin axis in disease: potential therapeutic indications. Mol Cell Endocrinol. 2011;340:106–10.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cappellari GG, Semolic A, Ruozi G, Vinci P, Guarnieri G, Bortolotti F, Barbetta D, Zanetti M, Giacca M, Barazzoni R. Unacylated ghrelin normalizes skeletall muscle oxidative stresss and prevents muscle catablism by enhancing tissue mitophagy in experimental chronic kidney disease. FASEB J. 2017;31:5159–71.CrossRefGoogle Scholar
  49. 49.
    Tamaki M, Hagiwara A, Miyashita K, Wakino S, Inoue H, Fujii K, Sato M, Mitsuishi M, Muraki A, Hayashi K, Doi T, Itoh H. Improvement of physical decline through combined effects of muscle enhancement and mitochondrial activation by a gastric hormone ghrelin in male 5/6Nx model mice. Endocrinology. 2015;156:3638–48.PubMedCrossRefGoogle Scholar
  50. 50.
    Campbell GA, Patrie JT, Gaylinn BD, Thorner MO, Bolton WK. Oral ghrelin receptor agonist MK-0677 increases serum insulin-like growth factor 1 in hemodialysis patients: a randomized blinded study. Nephrol Dial Transplant. 2018;33:523–30.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang ZH, Hsu CC, Huang CN, Yin MC. Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabetic mice. Eur J Pharmacol. 2009;628:255–60.PubMedCrossRefGoogle Scholar
  52. 52.
    Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab. 2011;13:627–38.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ebert SM, Dyle MC, Bullard SA, Dierdorff JM, Murry DJ, Fox DK, Bongers KS, Lira VA, Meyerholz DK, Talley JJ, Adams CM. Identification and small molecule inhibition of an activating transcription factor 4 (ATF4)-dependent pathway to age-related skeletal muscle weakness and atrophy. J Biol Chem. 2015;42:25497–511.CrossRefGoogle Scholar
  54. 54.
    Cho YH, Lee SY, Kim CM, Kim ND, Cho S, Lee C-H, Shin J-H. Effect of loquat leaf extract on muscle strength, muscle mass, and muscle function in healthy adults: a randomized double-blinded, and placebo-controlled trial. Evid Based Complement Alternat Med. 2016;2016:4301621.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Church DD, Schwarz NA, Spillane MB, McKinley-Barnard SK, Andre TL, Ramirez AJ, Willoughby DS. l-Leucine increases skeletal muscle IGF-I but does not differentially increases Akt/mTORC1 signaling and serum IGF-I compared to ursolic acid in response to resistance exercise in resistance-trained men. J Am Coll Nutr. 2016;35:627–38.PubMedCrossRefGoogle Scholar
  56. 56.
    Niwa T, Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med. 1994;124:96–104.PubMedGoogle Scholar
  57. 57.
    Nishikawa M, Ishimori N, Takada S, Saito A, Kadoguchi T, Furihara T, Fukushima A, Matsushima S, Yokota T, Kinugawa S, Tsutsui H. AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis in the skeletal muscle from mice with chronic kidney disease via reducing oxidative stress. Nephrol Dial Transplant. 2015;30:934–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Sato E, Saigusa D, Mishima E, Uchida T, Miura D, Morikawa-Ichinose T, Kisu K, Sekimoto A, Saito R, Oe Y, Matsumoto Y, Tomioka Y, Mori T, Takahashi M, Sato H, Abe T, Niwa T, Ito S. Impact of the oral adsorbent AST-120 on organ-specific accumulation of uremic toxins: LC-MS/MS and MS imaging techniques. Toxins. 2018;10:19.CrossRefGoogle Scholar
  59. 59.
    Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr. 2008;18:207–50.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ogura S, Maruyama K, Hagiya Y, Sugiyama Y, Tsuchiya K, Takahashi K, Abe F, Tabata K, Okura I, Nakajima M, Tanaka T. The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver. BMC Res Notes. 2011;4:66.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Masuki S, Morita A, Kamijo Y, Ikegawa S, Kataoka Y, Ogawa Y, Sumiyoshi E, Takahashi K, Tanaka T, Nakajima M, Nose H. Impact of 5-aminolevulinic acid with iron supplementation on exercise efficiency and home-based walking training achievement in older women. J Appl Physiol. 2016;120:87–96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Institute for Liberal Arts, Environment and SocietyTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of Physical TherapyHealth Sciences University of HokkaidoIshikari-TobetsuJapan

Personalised recommendations