Skip to main content

Stability Analysis of Fractured Rock Slopes with Vertical Cracks Subjected to the Hydraulic Effect Based on the Hoek–Brown Failure Criterion

  • Conference paper
  • First Online:
Advances in Environmental Vibration and Transportation Geodynamics

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 66))

  • 1058 Accesses

Abstract

In this paper, the stability of fractured rock slopes subjected to the hydraulic effect is studied using the upper bound limit analysis. The Hoek–Brown failure criterion and the strength reduction technique are introduced to obtain the expression of the safety factor of slopes considering hydraulic effect. Based on the nonlinear sequential quadratic programming, the safety factor (Fs) and critical failure surface for fractured rock slopes are investigated with different groundwater levels and crack depths. Besides, the detailed parametric analyses of Hoek–Brown failure criterion (i.e., Geological Strength Index (GSI), the disturbance coefficient (D) and the material constant (mi) obtained by compression tests) on fractured rock slopes are carried out. The results show that with an increase in the groundwater level and crack depth, the Fs of the fractured rock slope gradually decreases. The nonlinear strength parameters also have significant effect on the slope stability: As GSI increases, the values of Fs increase significantly; with an increase in D, the Fs gradually decreases; and with an increase in mi, the Fs gradually decreases when the groundwater level is low but gradually increases when the groundwater level is high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Michalowski RL (2012) Cracks in slopes: limit analysis approach to stability assessment. In: Geo-Congr ASCE, pp 442–50

    Google Scholar 

  2. Deng DP, Li L (2013) Stability analysis of slope with tensile crack under condition of seepage. J CentL South Univ (Sci Technol) 44(1):294–302

    Google Scholar 

  3. Zhao LH, Zou S, Deng DP, Han Z, Zhao B (2018) Development mechanism for the landslide at Xinlu Village, Chongqing, China. Landslides 15(10):2075–2081

    Article  Google Scholar 

  4. Viratjandr C, Michalowski RL (2006) Limit analysis of submerged slopes subjected to water drawdown. Can Geotech J 43(8):802–814

    Article  Google Scholar 

  5. Michalowski RL (1995) Slope stability analysis: a kinematical approach. Geotechnique 128(4):283–293

    Article  Google Scholar 

  6. Michalowski RL (2002) Stability charts for uniform slopes. J Geotech Geoenviron Eng 123(6):351–355

    Article  Google Scholar 

  7. Wang JX, Li Z, Chen W (2005) Lower bound analysis of soil slope stability using finite elements subjected to pore water pressure. Rock Soil Mech 26(8):1258–1262

    Google Scholar 

  8. Wang JX, Li Z (2007) Upper bound analysis of stability of soil slope subjected to pore water pressure using finite elements. Rock Soil Mech 28(2):213–218

    Google Scholar 

  9. Kim JM, Salgado R, Yu HS (1999) Limit analysis of soil slope subjected to pore-water pressures. J Geotech Geoenviron Eng ASCE 125(1):49–58

    Article  Google Scholar 

  10. Yin JH, Chen J, Li CF (2003) A rigid finite element method for upper bound limit analysis of soil slopes subjected to pore water pressure. Chin J Geotech Eng 25(3):273–277

    Google Scholar 

  11. Utili S (2013) Investigation by limit analysis on the stability of slopes with cracks. Geotechnique 63(2):1–15

    Article  Google Scholar 

  12. Utili S (2014) Discussion of ‘‘Stability assessment of slopes with cracks using limit analysis”. Can Geotech J 51(7):822–825

    Article  Google Scholar 

  13. Michalowski RL (2014) Reply to the discussion by Utili on ‘‘Stability assessment of slopes with cracks using limit analysis”. Can Geotech J 51(7):826–827

    Article  Google Scholar 

  14. Michalowski RL (2013) Stability assessment of slopes with cracks using limit analysis. Can Geotech J 50(10):1011–1021

    Article  Google Scholar 

  15. Utili S, Abd AH (2016) On the stability of fissured slopes subject to seismic action. Int J Numer Anal Methods Geomech 40(5):785–806

    Article  Google Scholar 

  16. Zhao LH, Cheng X, Zhang YB, Li L, Li DJ (2016) Stability analysis of seismic slopes with cracks. Comput Geotech 77:77–90

    Article  Google Scholar 

  17. Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Eng Div 106(15715):1013–1035

    Google Scholar 

  18. Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186

    Article  Google Scholar 

  19. Zhu HH, Zhang Q, Zhang LY (2013) Review of research progresses and applications of Hoek-Brown strength criterion. Chin J Rock Mechan Eng 10:1945–1963

    Google Scholar 

  20. Zhao LH, Yang F, Zhang YB et al (2015) Effects of shear strength reduction strategies on safety factor of homogeneous slope based on a general nonlinear failure criterion. Comput Geotech 63:215–228

    Article  Google Scholar 

  21. Zhao LH, Cheng X, Li L, Chen JQ, Zhang YB (2017) Seismic displacement along a log-spiral failure surface with crack using rock Hoek-Brown failure criterion. Soil Dyn Earthq Eng 99(12):74–85

    Article  Google Scholar 

  22. Zhao LH, Cheng X, Li DJ, Zhang YB (2019) Influence of non-dimensional strength parameters on the seismic stability of cracked slopes. J Mt Sci 16(1):153–167

    Article  Google Scholar 

  23. Zhao LH, Yang XP, Huang F, Tang YG, Hu SH (2018) Variational analysis of the ultimate pullout capacity of shallow circular anchor plates in rock foundations based on the Hoek-Brown failure criterion. Int J Rock Mech Min Sci 106:190–197

    Article  Google Scholar 

  24. Benz T, Schwab R, Kauther RA et al (2008) A Hoek-Brown criterion with intrinsic material strength factorization. Int J Rock Mech Min Sci 45(2):210–222

    Article  Google Scholar 

  25. Hammah RE, Yacoub TE, Corkum BC, Curran JH (2005) The shear strength reduction method for the generalized Hoek-Brown criterion. Alaska Rocks. In: The 40th US symposium on rock mechanics (USRMS): rock mechanics for energy, mineral and infrastructure development in the northern regions. ARMA, Alaska, pp 1–6

    Google Scholar 

  26. Zheng H, Sun GH, Liu DF (2009) A practical procedure for searching critical slip surfaces of slopes based on the strength reduction technique. Comput Geotech 36(1–2):1–5

    Article  Google Scholar 

  27. Li AJ, Merifield RS, Lyamin AV (2008) Stability charts for rock slopes based on the Hoek-Brown failure criterion. Int J Rock Mech Min Sci 45(5):689–700

    Article  Google Scholar 

  28. Li AJ, Lyamin AV, Merifield RS (2009) Seismic rock slope stability charts based on limit analysis methods. Comput Geotech 36(1–2):135–148

    Article  Google Scholar 

  29. Saada Z, Maghous S, Garnier D (2012) Stability analysis of rock slopes subjected to seepage forces using the modified Hoek-Brown criterion. Int J Rock Mech Min Sci 55(55):45–54

    Article  Google Scholar 

  30. Yang XL, Li L, Yin JH (2004) Stability analysis of rock slopes with a modified Hoek-Brown failure criterion. Int J Numer Anal Methods Geomech 28(2):181–190

    Article  Google Scholar 

  31. Collins IF, Gunn CIM, Pender MJ et al (1986) Slope stability analyses for materials with a non-linear failure envelope. Int J Numer Anal Methods Geomech 12(5):533–550

    Article  Google Scholar 

  32. Drescher A, Christopoulos C (1988) Limit analysis slope stability with nonlinear yield condition. Int J Numer Anal Methods Geomech 12(3):341–345

    Article  Google Scholar 

  33. Hoek E, Carranze-Torres C, Corkum B (2000) Hoek–Brown failure criterion-2002 edition. In: Proceedings of the North American Rock mechanics society meeting, pp 267–273

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51208522 and 51478477) and the Guizhou Provincial Department of Transportation Foundation (Nos. 2012122033, and 2014122006). All financial support is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian-heng Zhao or Xiao Cheng .

Editor information

Editors and Affiliations

Appendix

Appendix

$$ \begin{aligned} f_{1} & = \left[ {\text{e}^{{3\left( {\theta_{\text{h}} - \theta_{0} } \right)\tan \varphi_{\text{t}} }} \left( {3\tan \varphi_{\text{t}} \cos \theta_{\text{h}} + \sin \theta_{\text{h}} } \right)} \right. \\ & \quad - {{\left. {3\tan \varphi_{\text{t}} \cos \theta_{0} - \sin \theta_{0} } \right]} \mathord{\left/ {\vphantom {{\left. {3\tan \varphi_{\text{t}} \cos \theta_{0} - \sin \theta_{0} } \right]} {3\left( {1 + 9\tan^{2} \varphi_{\text{t}} } \right)}}} \right. \kern-0pt} {3\left( {1 + 9\tan^{2} \varphi_{\text{t}} } \right)}} \\ \end{aligned} $$
(27)
$$ f_{2} = \frac{1}{6}\sin \theta_{0} \frac{{L_{1} }}{{r_{0} }}\left( {2\cos \theta_{0} - \frac{{L_{1} }}{{r_{0} }}} \right) $$
(28)
$$ f_{3} = \frac{1}{6}\text{e}^{{\left( {\theta_{\text{h}} - \theta_{0} } \right)\tan \varphi_{\text{t}} }} \left[ {\sin \left( {\theta_{\text{h}} - \theta_{0} } \right) - \frac{{L_{1} }}{{r_{0} }}\sin \theta_{\text{h}} } \right]\left( {\cos \theta_{0} - \frac{{L_{1} }}{{r_{0} }} + \text{e}^{{\left( {\theta_{\text{h}} - \theta_{0} } \right)\tan \varphi_{\text{t}} }} \cos \theta_{\text{h}} } \right) $$
(29)
$$ f_{4} = \frac{1}{2}\left( {\frac{H}{{r_{0} }}} \right)^{2} \left( {\cot \beta^{{\prime }} - \cot \beta } \right)\left[ {\cos \theta_{0} - \frac{{L_{1} }}{{r_{0} }} - \frac{1}{3}\frac{H}{{r_{0} }}(\cot \beta^{{\prime }} + \cot \beta )} \right] $$
(30)
$$ p_{1} = \left[ {\text{e}^{{3\tan \varphi_{\text{t}} \left( {\theta_{\text{c}} - \theta_{0} } \right)}} \left( {3\tan \varphi_{\text{t}} \cos \theta_{\text{c}} + \sin \theta_{\text{c}} } \right) - } \right.{{\left. {3\tan \varphi_{\text{t}} \cos \theta_{0} - \sin \theta_{0} } \right]} \mathord{\left/ {\vphantom {{\left. {3\tan \varphi_{\text{t}} \cos \theta_{0} - \sin \theta_{0} } \right]} {3\left( {1 + 9\tan^{2} \varphi_{\text{t}} } \right)}}} \right. \kern-0pt} {3\left( {1 + 9\tan^{2} \varphi_{\text{t}} } \right)}} $$
(31)
$$ p_{2} = \frac{1}{6}\sin \theta_{0} \frac{{L_{2} }}{{r_{0} }}\left( {2\cos \theta_{0} - \frac{{L_{2} }}{{r_{0} }}} \right) $$
(32)
$$ p_{3} = \frac{1}{3}\text{e}^{{2\tan \varphi_{\text{t}} (\theta_{\text{c}} - \theta_{0} )}} \left( {\cos \theta_{\text{c}} } \right)^{2} \left\{ {\text{e}^{{\tan \varphi_{\text{t}} (\theta_{c} - \theta_{0} )}} \sin \theta_{\text{c}} - \sin \theta_{0} } \right\} $$
(33)
$$ \begin{aligned} f^{1} & = \left[ {\text{e}^{{3\tan \varphi_{\text{t}} \left( {\theta_{2} - \theta_{0} } \right)}} \left( {3\tan \varphi_{\text{t}} \sin \theta_{2} - \cos \theta_{2} } \right) + \text{e}^{{3\tan \varphi_{\text{t}} \left( {\theta_{\text{c}} - \theta_{0} } \right)}} } \right. \\ & \quad {{\left. {(\cos \theta_{\text{c}} - 3\tan \varphi_{\text{t}} \sin \theta_{\text{c}} )} \right]} \mathord{\left/ {\vphantom {{\left. {(\cos \theta_{\text{c}} - 3\tan \varphi_{\text{t}} \sin \theta_{\text{c}} )} \right]} {\left( {1 + 9\tan^{2} \varphi_{\text{t}} } \right)}}} \right. \kern-0pt} {\left( {1 + 9\tan^{2} \varphi_{\text{t}} } \right)}} \\ & \quad - \frac{{\sin \theta_{1} }}{{2\tan \varphi_{\text{t}} }}\left( {{\text{e}}^{{(2\theta_{2} - 3\theta_{0} + \theta_{1} )\tan \varphi_{\text{t}} }} - {\text{e}}^{{(2\theta_{\text{c}} - 3\theta_{0} + \theta_{1} )\tan \varphi_{\text{t}} }} } \right) \\ \end{aligned} $$
(34)
$$ \begin{aligned} f^{2} & = \left[ {\left( {3\tan \varphi_{\text{t}} \sin \theta_{3} - \cos \theta_{3} } \right)} \right.{\text{e}}^{{3(\theta_{3} - \theta_{0} )\tan \varphi_{\text{t}} }} \\ & \quad + {\text{e}}^{{3(\theta_{2} - \theta_{0} )\tan \varphi_{\text{t}} }} \left. {(\cos \theta_{2} - 3\tan \varphi_{\text{t}} \sin \theta_{2} )} \right]/\left( {1 + 9\tan^{2} \varphi_{\text{t}} } \right) \\ & \quad - \frac{{\sin \theta_{\text{h}} }}{{2\tan \varphi_{\text{t}} }}\left[ {{\text{e}}^{{(2\theta_{3} + \theta_{\text{h}} - 3\theta_{0} )\tan \varphi_{\text{t}} }} - {\text{e}}^{{(2\theta_{2} + \theta_{\text{h}} - 3\theta_{0} )\tan \varphi_{\text{t}} }} } \right] \\ & \quad + \tan \beta \left[ {\left( {3\tan \varphi_{\text{t}} \cos \theta_{3} + \sin \theta_{3} } \right)} \right.{\text{e}}^{{3(\theta_{3} - \theta_{0} )\tan \varphi_{\text{t}} }} \\ & \quad - {\text{e}}^{{3(\theta_{2} - \theta_{0} )\tan \varphi_{\text{t}} }} \left. {(\sin \theta_{2} + 3\tan \varphi_{\text{t}} \cos \theta_{2} )} \right]/\left( {1 + 9\tan^{2} \varphi_{\text{t}} } \right) \\ & \quad - \frac{{\cos \theta_{3} \tan \beta }}{{2\tan \varphi_{\text{t}} }}\left[ {{\text{e}}^{{3(\theta_{3} - \theta_{0} )\tan \varphi_{\text{t}} }} - {\text{e}}^{{(2\theta_{2} + \theta_{3} - 3\theta_{0} )\tan \varphi_{\text{t}} }} } \right] \\ \end{aligned} $$
(35)
$$ \begin{aligned} f^{3} & = \left[ {\left( {3\tan \varphi_{\text{t}} \sin \theta_{\text{h}} - \cos \theta_{h} } \right)} \right.{\text{e}}^{{3(\theta_{\text{h}} - \theta_{0} )\tan \varphi_{\text{t}} }} \\ & \quad + {\text{e}}^{{3(\theta_{3} - \theta_{0} )\tan \varphi_{\text{t}} }} {\kern 1pt} \left. {({ \cos }\theta_{3} - 3\tan \varphi_{\text{t}} \sin \theta_{3} )} \right]/\left( {1 + 9\tan^{2} \varphi_{\text{t}} } \right) \\ & \quad - \frac{{\sin \theta_{\text{h}} }}{{2\tan \varphi_{\text{t}} }}\left[ {{\text{e}}^{{3(\theta_{\text{h}} - \theta_{0} )\tan \varphi_{\text{t}} }} - {\text{e}}^{{(2\theta_{3} + \theta_{\text{h}} - 3\theta_{0} )\tan \varphi_{\text{t}} }} } \right] \\ \end{aligned} $$
(36)
$$ \begin{aligned} f^{1*} & = \frac{{\left[ {\left( {3\tan \varphi_{\text{t}} \sin \theta_{2} - \cos \theta_{2} } \right)} \right.{\text{e}}^{{3(\theta_{2} - \theta_{0} )\tan \varphi_{\text{t}} }} + {\text{e}}^{{3(\theta_{1} - \theta_{0} )\tan \varphi_{\text{t}} }} \left. {{\kern 1pt} (\cos \theta_{1} - 3\tan \varphi_{\text{t}} \sin \theta_{1} )} \right]}}{{1 + 9\tan^{2} \varphi_{\text{t}} }} \\ & \quad - \frac{{\sin \theta_{1} \left[ {{\text{e}}^{{(2\theta_{2} - 3\theta_{0} + \theta_{1} )\tan \varphi_{\text{t}} }} - {\text{e}}^{{3(\theta_{1} - \theta_{0} )\tan \varphi_{\text{t}} }} } \right]}}{{2\tan \varphi_{\text{t}} }} \\ \end{aligned} $$
(37)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pi, Xq., Zhao, Lh., Cheng, X., Tan, Hh. (2020). Stability Analysis of Fractured Rock Slopes with Vertical Cracks Subjected to the Hydraulic Effect Based on the Hoek–Brown Failure Criterion. In: Tutumluer, E., Chen, X., Xiao, Y. (eds) Advances in Environmental Vibration and Transportation Geodynamics. Lecture Notes in Civil Engineering, vol 66. Springer, Singapore. https://doi.org/10.1007/978-981-15-2349-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2349-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2348-9

  • Online ISBN: 978-981-15-2349-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics