InECCE2019 pp 153-165 | Cite as

Optimization of Quaternion Based on Hybrid PID and \(\varvec{P}_{\varvec{\omega}} \varvec{ }\) Control

  • Balya Darohini
  • M. F. AbasEmail author
  • N. Md. Saad
  • Dwi Pebrianti
  • H. Ahmad
  • M. H. Ariff
  • M. R. Arshad
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 632)


The aim of this article is to present an optimization of full non-linear quaternion based on hybrid control scheme using Genetic Algorithm (GA). A comprehensive objective is used to find novel solutions to design hybrid controller based on PID and \(\varvec{ P}_{\varvec{\omega}}\) control so that the performance and functionality system and may be compromised. The proposed hybrid control algorithm and quadrotor attitude model have been implemented in the fully quaternion space without any conversion and calculations in the Euler’s angles. In this paper, the optimized quaternion with fitness function composed of \(\varvec{ K}_{\varvec{P}}\), \(\varvec{ K}_{\varvec{I}}\), \(\varvec{ K}_{\varvec{D}}\), and \(\varvec{ P}_{\varvec{\omega}}\) are proposed, and the output effective waveform is shown by simulations using MATLAB.


Genetic algorithm Quaternion UAV PID controller Crossover Mutation 



The authors would like to thank UMP for financing the research project under UMP research Scheme RDU1703315.


  1. 1.
    Castillo P, Lozano R, Dzul A (2016) Modelling and control of mini flying machines, Automatica, Springer, 2005; Conference 2016, LNCS, vol 9999. Springer, Heidelberg, pp 1–13Google Scholar
  2. 2.
    Barczyk M, Lynch AF (2012) Integration of a trixial magnetormeter into a helicopter UAV GPS aided inertial navigation system. IEEE Trans Aerosp Electron SystGoogle Scholar
  3. 3.
    Armutcuoglu O, Tekinalp O (2004) Tilt duck vertical takeoff and landing uninhabited aerial vehicle concept design study. J Aircraft 41(2):215–223CrossRefGoogle Scholar
  4. 4.
    Kendoul F, Fantoni I, Lozano R (2006) Modelling and control of a small autonomous aircraft having two tilting rotors. IEEE Trans Rob 22(6):1297–1302CrossRefGoogle Scholar
  5. 5.
    Prior SD, Karamanoglu M, Odedra S, Foran T, Erbil MA (2009) Development of co-axial tri-rotor UAV. Bristol Int Unmanned Aerial Veh Syst ConfGoogle Scholar
  6. 6.
    Romero H, Salazar S, Lozano R (2009) Real time stabalization of an eight rotor UAV using optocal flow. IEEE Trans Rob 25(4):809–817CrossRefGoogle Scholar
  7. 7.
    Abas MFB, Pebrianti D, Ali SAM, Iwakura D, Song Y, Nonami K, Fujiwara D (2013) Circular leader-follower formation control of quad-rotor aerial vehicles. J Robot Mechatron 25(1)Google Scholar
  8. 8.
    Zhao B, Xian B, Zhang Y, Zhang X (2015) Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans Ind Electron 62(5):2891–2902CrossRefGoogle Scholar
  9. 9.
    Xue K, Wang C, Li Z, Chen H (2016) Online adaptive error compensation SVM-based sliding mode control of an unmanned aerial vehicle. Int J Aerosp EngGoogle Scholar
  10. 10.
    Modirrousta A, Khodabandeh M (2014) Adaptive robust sliding mode controller design for disturbances. In: Proceeding 2nd RSI/ISM International Conference on Robotics and Mechatronics, pp 870–877Google Scholar
  11. 11.
    Ghaffar AA, Richardson T (2015) Model reference adaptive control and LQR control for quadrotor with parametric uncertainties, vol 9, no 2, pp 244–250Google Scholar
  12. 12.
    Chen F, Jiang R, Zhang K, Jiang B, Tao G (2016) Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans Ind Electron 63(8):5044–5056CrossRefGoogle Scholar
  13. 13.
    Zulu A, John S (2014) A review of control algorithms for autonomous quadrotors. Open J Appl Sci 4:547–556Google Scholar
  14. 14.
    Ghiglino P, Forshaw JL, Lappas VJ (2015) OQTAL: optimal quaternion tracking using attitude error linearization. IEEE Trans Aerosp Electron Syst 51(4):2715–2731CrossRefGoogle Scholar
  15. 15.
    Djamel K, Abdellah M, Benallegue A (2016) Attitude optimal backstepping controller based quaternion for a UAV. Math Probl EngGoogle Scholar
  16. 16.
    Di Lucia S, Tipaldi GD, Burgard W (2015) Attitude stabilization control of an aerial manipulator using a quaternion-based backstepping approach. In: 2015 European conference on mobile robots ECMR 2015—proceedingsGoogle Scholar
  17. 17.
    Chovancova A, Fico T, Hubinsky P, Duchon F (2015) Comparison of various quaternion-based control methods applied to quadrotor with disturbance observer and position estimator. Robot Auton Syst 79:87–98CrossRefGoogle Scholar
  18. 18.
    Fresk E, Nikolakopoulos G (2013) Full quaternion based attitude control for a quadrotor. In: 2013 European control conference (ECC), pp 3864–3869Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Balya Darohini
    • 1
  • M. F. Abas
    • 1
    Email author
  • N. Md. Saad
    • 1
  • Dwi Pebrianti
    • 1
  • H. Ahmad
    • 1
  • M. H. Ariff
    • 1
  • M. R. Arshad
    • 2
  1. 1.Faculty of Electrical and Electronics EngineeringUniversiti Malaysia PahangPekanMalaysia
  2. 2.School of Electrical & Electronic Engineering, Engineering CampusUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations