Advertisement

InECCE2019 pp 101-111 | Cite as

Development of AC and DC Drive Coils for a Small Volume Magnetic Particle Imaging System

  • Mohd Mawardi SaariEmail author
  • Ahmad Zahir Irsyad Razak
  • Mohd Aufa Hadi Putera Zain
  • Nurul A’in Nadzri
  • Mohd Razali Daud
  • Hamzah Ahmad
Conference paper
  • 23 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 632)

Abstract

Recent development in a new imaging modality called Magnetic Particle Imaging (MPI) technique has attracted much interests from researchers where it is expected to provide a higher spatial and temporal resolutions of images. The MPI technique works by utilizing an AC field to modulate the magnetic response from magnetic nanoparticles and a gradient DC field to localize the magnetic nanoparticles, where the characteristics of AC and DC fields affect the performance of MPI technique. The purpose of this study is to develop compact DC and AC drive coils as a preliminary step towards implementation in a small volume MPI system. The AC drive coil is designed based on a Helmholtz-coil configuration and resonated at a frequency to lower its circuit impedance. The gradient DC field is realized by combination of permanent magnets and a DC coil to shift a Flux Free Line (FFL) vertically. A 3rd-order Butterworth low-pass filter is implemented in the DC drive coil circuit to protect its DC current source from high-frequency field induction. The AC drive coil is able to be resonated at the designed frequency of 8 kHz and fairly good horizontal and vertical gradient DC fields are obtained. The DC drive coil is able to shift the FFL vertically at 0.33 mm/A and further improvement can be expected in the coil design for future implementation in the small volume MPI system.

Keywords

Coil Resonance Low pass filter Magnetic particle imaging 

Notes

Acknowledgements

This work was supported by Research Management Center of Universiti Malaysia Pahang under grant number of RDU170377.

References

  1. 1.
    Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217.  https://doi.org/10.1038/nature03808CrossRefGoogle Scholar
  2. 2.
    Graeser M, Knopp T, Szwargulski P et al (2017) Towards picogram detection of superparamagnetic iron-oxide particles using a gradiometric receive coil. Sci Rep 7:6872.  https://doi.org/10.1038/s41598-017-06992-5CrossRefGoogle Scholar
  3. 3.
    Bakenecker AC, Ahlborg M, Debbeler C et al (2018) Magnetic particle imaging in vascular medicine. Innov Surg Sci 3:179–192Google Scholar
  4. 4.
    Yu EY, Bishop M, Zheng B et al (2017) Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett 17.  https://doi.org/10.1021/acs.nanolett.6b04865
  5. 5.
    Konkle JJ, Goodwill PW, Carrasco-Zevallos OM, Conolly SM (2013) Projection reconstruction magnetic particle imaging. IEEE Trans Med Imaging 32:338–347.  https://doi.org/10.1109/TMI.2012.2227121CrossRefGoogle Scholar
  6. 6.
    Sasayama T, Tsujita Y, Morishita M et al (2016) Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils. J Magn Magn Mater 427:144–150.  https://doi.org/10.1016/j.jmmm.2016.10.107CrossRefGoogle Scholar
  7. 7.
    Weizenecker J, Gleich B, Rahmer J et al (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54:L1–L10.  https://doi.org/10.1088/0031-9155/54/5/L01CrossRefGoogle Scholar
  8. 8.
    Vogel P, Ruckert M, Klauer P et al (2013) Traveling wave magnetic particle imaging. IEEE Trans Med Imaging 33:400–407.  https://doi.org/10.1109/TMI.2013.2285472CrossRefGoogle Scholar
  9. 9.
    Croft LR, Goodwill PW, Konkle JJ et al (2016) Low drive field amplitude for improved image resolution in magnetic particle imaging. Med Phys 43.  https://doi.org/10.1118/1.4938097
  10. 10.
    Lu K, Goodwill PW, Saritas EU et al (2013) Linearity and shift invariance for quantitative magnetic particle imaging. IEEE Trans Med Imaging 32:1565–1575.  https://doi.org/10.1109/TMI.2013.2257177CrossRefGoogle Scholar
  11. 11.
    Konkle JJ, Goodwill PW, Hensley DW, et al (2015) A convex formulation for magnetic particle imaging X-space reconstruction. PLoS One 10.  https://doi.org/10.1371/journal.pone.0140137
  12. 12.
    Shah SA, Ferguson RM, Krishnan KM (2014) Slew-rate dependence of tracer magnetization response in magnetic particle imaging. J Appl Phys 116.  https://doi.org/10.1063/1.4900605
  13. 13.
    Bauer LM, Situ SF, Griswold MA, Samia ACS (2015) Magnetic particle imaging tracers: state-of-the-art and future directions. J Phys Chem Lett 6Google Scholar
  14. 14.
    Saari MM, Suhaimi NS, Sulaiman MH et al (2019) Influence of viscosity on dynamic magnetization of thermally blocked iron oxide nanoparticles characterized by a sensitive AC magnetometer. J Supercond Nov Magn.  https://doi.org/10.1007/s10948-019-5031-6CrossRefGoogle Scholar
  15. 15.
    Buzug TM, Bringout G, Erbe M et al (2012) Magnetic particle imaging: introduction to imaging and hardware realization. Z Med Phys 22:323–334.  https://doi.org/10.1016/j.zemedi.2012.07.004CrossRefGoogle Scholar
  16. 16.
    Goodwill PW, Conolly SM (2010) The x-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 29:1851–1859.  https://doi.org/10.1109/TMI.2010.2052284CrossRefGoogle Scholar
  17. 17.
    Weizenecker J, Gleich B, Borgert J (2008) Magnetic particle imaging using a field free line. J Phys D Appl Phys 41:105009.  https://doi.org/10.1088/0022-3727/41/10/105009CrossRefGoogle Scholar
  18. 18.
    Colombo S, Lebedev V, Tonyushkin A et al (2016) Towards a mechanical MPI scanner based on atomic magnetometry. 1–6Google Scholar
  19. 19.
    Weber A, Werner F, Weizenecker J et al (2016) Artifact free reconstruction with the system matrix approach by overscanning the field-free-point trajectory in magnetic particle imaging. Phys Med Biol 61:475–487.  https://doi.org/10.1088/0031-9155/61/2/475CrossRefGoogle Scholar
  20. 20.
    Tay ZW, Goodwill PW, Hensley DW et al (2016) A high-throughput, arbitrary-waveform, MPI spectrometer and relaxometer for comprehensive magnetic particle optimization and characterization. Sci Rep 6:34180.  https://doi.org/10.1038/srep34180CrossRefGoogle Scholar
  21. 21.
    Zheng B, Goodwill PW, Dixit N et al (2017) Optimal broadband noise matching to inductive sensors: application to magnetic particle imaging. IEEE Trans Biomed Circuits Syst 11:1041–1052.  https://doi.org/10.1109/TBCAS.2017.2712566CrossRefGoogle Scholar
  22. 22.
    Bauer LM, Hensley DW, Zheng B et al (2016) Eddy current-shielded x-space relaxometer for sensitive magnetic nanoparticle characterization. Rev Sci Instrum 87.  https://doi.org/10.1063/1.4950779
  23. 23.
    Tsukada K, Tsunashima K, Jinno K et al (2019) Using magnetic field gradients to shorten the antigen-antibody reaction time for a magnetic immunoassay. IEEE Trans Magn 1–5.  https://doi.org/10.1109/tmag.2019.2894904
  24. 24.
    Saari MM, Suhaimi NS, Razali S et al (2018) Development of a resonant excitation coil of AC magnetometer for evaluation of magnetic fluid. J Telecommun Electron Comput Eng 10Google Scholar
  25. 25.
    Saari MM, Suhaimi NS, Lah NAC et al (2018) A sensitive AC magnetometer using a resonant excitation coil for magnetic fluid characterization in nonlinear magnetization region. In: 2018 IEEE international magnetics conference (INTERMAG). IEEE, pp 1–4Google Scholar
  26. 26.
    Saari MM, Che Lah NA, Sakai K et al (2018) Harmonics distribution of iron oxide nanoparticles solutions under diamagnetic background. J Magn Magn Mater 452:145–152.  https://doi.org/10.1016/j.jmmm.2017.12.054CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mohd Mawardi Saari
    • 1
    Email author
  • Ahmad Zahir Irsyad Razak
    • 1
  • Mohd Aufa Hadi Putera Zain
    • 1
  • Nurul A’in Nadzri
    • 1
  • Mohd Razali Daud
    • 1
  • Hamzah Ahmad
    • 1
  1. 1.Faculty of Electrical and Electronics Engineering TechnologyUniversiti Malaysia PahangPekanMalaysia

Personalised recommendations