Chapter 11 Fertilization in Amphibians: The Cellular and Molecular Events from Sperm Approach to Egg Activation

  • Yasuhiro IwaoEmail author
  • Mami Watabe


The mechanism of fertilization is important for understanding the role of sexual reproduction in animals. Amphibians are one of the most suitable systems to investigate the cellular and molecular mechanisms of fertilization. Inseminated sperm approach the egg by initiation of motility and chemotactic guidance in response to substances secreted from oviducts on the egg surface. Sperm undergoing the acrosome reaction penetrate the vitelline envelope, and then fuse with the egg plasma membrane. The fertilizing sperm induces an increase in the intracellular Ca2+ concentration, causing egg activation, and initiation of embryonic development. The activated egg elicits several blocks to polyspermy, ensuring development from only one sperm. Recent advances in cellular and molecular mechanisms in amphibian fertilization are summarized and their important roles for establishment of amphibian fertilization are discussed.


Sperm motility Acrosome reaction Egg activation Polyspermy block 



We thank Dr. Akihiko Watanabe, Yamagata University, for reviewing the manuscript. This work was supported by JSPS KAKENHI Grant Numbers, JP16K07373 and JP19K06690 to Y.I. and by The YU “Pump-Priming Program” for Fostering Research Activities.


  1. Aimar C, Labrousse JP (1975) DNA synthesis and evolution, in presence of a somatic nucleus, of the female pronucleus after experimental activation of the egg of Pleurodeles waltlii. Dev Growth Differ 17:197–207CrossRefGoogle Scholar
  2. al-Anzi B, Chandler DE (1998) A sperm chemoattractant is released from Xenopus egg jelly during spawning. Dev Biol 198(2):366–375CrossRefGoogle Scholar
  3. Andreuccetti P, Denis-Donini S, Burrini AG, Campanella C (1984) Calcium ultrastructural localization in Xenopus laevis eggs following activation by pricking or by calcium ionophore A 23187. J Exp Zool 229(2):295–308CrossRefGoogle Scholar
  4. Barisone GA, Krapf D, Correa-Fiz F, Arranz SE, Cabada MO (2007) Glycoproteins of the vitelline envelope of amphibian oocyte: biological and molecular characterization of ZPC component (gp41) in Bufo arenarum. Mol Reprod Dev 74(5):629–640CrossRefGoogle Scholar
  5. Barrera D, Llanos RJ, Miceli DC (2012) Participation of the 39-kDa glycoprotein (gp39) of the vitelline envelope of Bufo arenarum eggs in sperm-egg interaction. Zygote 20(2):159–171CrossRefGoogle Scholar
  6. Bates RC, Fees CP, Holland WL, Winger CC, Batbayar K, Ancar R, Bergren T, Petcoff D, Stith BJ (2015) Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization. Dev Biol 386(1):165–180CrossRefGoogle Scholar
  7. Burnett LA, Boyles S, Spencer C, Bieber AL, Chandler DE (2008) Xenopus tropicalis allurin: expression, purification, and characterization of a sperm chemoattractant that exhibits cross-species activity. Dev Biol 316(2):408–416CrossRefGoogle Scholar
  8. Burnett LA, Sugiyama H, Bieber AL, Chandler DE (2011a) Egg jelly proteins stimulate directed motility in Xenopus laevis sperm. Mol Reprod Dev 78(6):450–462CrossRefGoogle Scholar
  9. Burnett LA, Tholl N, Chandler DE (2011b) Two types of assays for detecting frog sperm chemoattraction. J Vis Exp 58:e3407Google Scholar
  10. Cabada MO, Mariano MI, Raisman JS (1978) Effect of trypsin inhibitors and concanavalin A on the fertilization of Bufo arenarum coelomic oocytes. J Exp Zool 204(3):409–416CrossRefPubMedGoogle Scholar
  11. Cabada MO, Manes ME, Gomez MI (1989) Spermatolysins in Bufo arenarum: their activity on oocyte surface. J Exp Zool 249(2):229–234CrossRefPubMedGoogle Scholar
  12. Campanella C, Carotenuto R, Infante V, Maturi G, Atripaldi U (1997) Sperm-egg interaction in the painted frog (Discoglossus pictus): an ultrastructural study. Mol Reprod Dev 47(3):323–333CrossRefPubMedGoogle Scholar
  13. Campanella C, Caputo M, Vaccaro MC, De Marco N, Tretola L, Romano M, Prisco M, Camardella L, Flagiello A, Carotenuto R, Limatola E, Polzonetti-Magni A, Infante V (2011) Lipovitellin constitutes the protein backbone of glycoproteins involved in sperm-egg interaction in the amphibian Discoglossus pictus. Mol Reprod Dev 78(3):161–171CrossRefPubMedGoogle Scholar
  14. Caputo M, Infante V, Talevi R, Vaccaro MC, Carotenuto R, Campanella C (2001) Following passage through the oviduct, the coelomic envelope of Discoglossus pictus (amphibia) acquires fertilizability upon reorganization, conversion of gp 42 to gp 40, extensive glycosylation, and formation of a specific layer. Mol Reprod Dev 58(3):318–329CrossRefPubMedGoogle Scholar
  15. Charbonneau M, Picheral B (1983) Early events in anuran amphibian gertilization: an ultrastructural study of changes occurring in the course of monospermic fertilization and artificial activation. Dev Growth Differ 25(1):23–37CrossRefGoogle Scholar
  16. Charbonneau M, Moreau M, Picheral B, Vilain JP, Guerrier P (1983) Fertilization of amphibian eggs: a comparison of electrical responses between anurans and urodeles. Dev Biol 98(2):304–318CrossRefGoogle Scholar
  17. Coux G, Cabada MO (2006) Characterization of Bufo arenarum oocyte plasma membrane proteins that interact with sperm. Biochem Biophys Res Commun 343(1):326–333CrossRefGoogle Scholar
  18. Cross NL, Elinson RP (1980) A fast block to polyspermy in frogs mediated by changes in the membrane potential. Dev Biol 75(1):187–198CrossRefPubMedPubMedCentralGoogle Scholar
  19. Duellman WE (2003) An overview of anuran phylogeny, classification and reproductive modes. In: Jamieson BGM (ed) Reproductive biology and phylogeny of anura. Reproductive biology and phylogeny, vol 2. Science Publishers, Plymouth, pp 1–18Google Scholar
  20. Elinson EP (1971) Sperm lytic activity and its relation to fertilization in the frog Rana pipiens. J Exp Zool 177(2):207–217CrossRefPubMedGoogle Scholar
  21. Elinson RP (1973) Fertilization of frog body cavity eggs enhanced by treatment affecting the vitelline coat. J Exp Zool 183:291–302CrossRefGoogle Scholar
  22. Elinson RP (1986) Fertilization in amphibians: the ancestry of the block to polyspermy. Int Rev Cytol 101:59–100CrossRefPubMedGoogle Scholar
  23. Fankhauser G (1948) The organization of the amphibian egg during fertilization and cleavage. Ann N Y Acad Sci 49(Art 5):684–708CrossRefPubMedGoogle Scholar
  24. Fankhauser G (1967) Urodeles. In: Wilt FH, Wessels NK (eds) Methods in developmental biology. Thomas Crowell Publishers, New York, pp 85–99Google Scholar
  25. Fees CP, Stith BJ (2019) Insemination or phosphatidic acid induces an outwardly spiraling disk of elevated Ca2+ to produce the Ca2+ wave during Xenopus laevis fertilization. Dev Biol 448(1):59–68CrossRefPubMedGoogle Scholar
  26. Feller AE, Hedges SB (1998) Molecular evidence for the early history of living amphibians. Mol Phylogenet Evol 9(3):509–516CrossRefPubMedGoogle Scholar
  27. Fontanilla RA, Nuccitelli R (1998) Characterization of the sperm-induced calcium wave in Xenopus eggs using confocal microscopy. Biophys J 75(4):2079–2087CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gerton GL, Hedrick JL (1986a) The coelomic envelope to vitelline envelope conversion in eggs of Xenopus laevis. J Cell Biochem 30(4):341–350CrossRefPubMedGoogle Scholar
  29. Gerton GL, Hedrick JL (1986b) The vitelline envelope to fertilization envelope conversion in eggs of Xenopus laevis. Dev Biol 116(1):1–7CrossRefPubMedGoogle Scholar
  30. Glahn D, Nuccitelli R (2003) Voltage-clamp study of the activation currents and fast block to polyspermy in the egg of Xenopus laevis. Dev Growth Differ 45(2):187–197CrossRefPubMedPubMedCentralGoogle Scholar
  31. Goldenberg M, Elinson RP (1980) Animal/vegetal difference in cortical granules exocytosis during activation of the frog egg. Dev Growth Differ 22:345–356CrossRefGoogle Scholar
  32. Gomes AD, Moreira RG, Navas CA, Antoniazzi MM, Jared C (2012) Review of the reproductive biology of caecilians (Amphibia, Gymnophiona). South Am J Herpetol 7(3):191–202CrossRefGoogle Scholar
  33. Grandin N, Charbonneau M (1992) Intracellular free Ca2+ changes during physiological polyspermy in amphibian eggs. Development 114(3):617–624PubMedPubMedCentralGoogle Scholar
  34. Grey RD, Wolf DP, Hedrick JL (1974) Formation and structure of the fertilization envelope in Xenopus laevis. Dev Biol 36(1):44–61CrossRefPubMedPubMedCentralGoogle Scholar
  35. Grey RD, Bastiani MJ, Webb DJ, Schertel ER (1982) An electrical block is required to prevent polyspermy in eggs fertilized by natural mating of Xenopus laevis. Dev Biol 89(2):475–484CrossRefPubMedPubMedCentralGoogle Scholar
  36. Guerardel Y, Kol O, Maes E, Lefebvre T, Boilly B, Davril M, Strecker G (2000) O-glycan variability of egg-jelly mucins from Xenopus laevis: characterization of four phenotypes that differ by the terminal glycosylation of their mucins. Biochem J 352 Pt 2:449–463Google Scholar
  37. Harada Y, Matsumoto T, Hirahara S, Nakashima A, Ueno S, Oda S, Miyazaki S, Iwao Y (2007) Characterization of a sperm factor for egg activation at fertilization of the newt Cynops pyrrhogaster. Dev Biol 306(2):797–808CrossRefPubMedPubMedCentralGoogle Scholar
  38. Harada Y, Kawazoe M, Eto Y, Ueno S, Iwao Y (2011) The Ca2+ increase by the sperm factor in physiologically polyspermic newt fertilization: its signaling mechanism in egg cytoplasm and the species-specificity. Dev Biol 351(2):266–276CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hasan AK, Fukami Y, Sato K (2011) Gamete membrane microdomains and their associated molecules in fertilization signaling. Mol Reprod Dev 78(10–11):814–830CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hedrick JL (2008) Anuran and pig egg zona pellucida glycoproteins in fertilization and early development. Int J Dev Biol 52(5–6):683–701CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hiyoshi M, Takamune K, Mita K, Kubo H, Sugimoto Y, Katagiri C (2002) Oviductin, the oviductal protease that mediates gamete interaction by affecting the vitelline coat in Bufo japonicus: its molecular cloning and analyses of expression and posttranslational activation. Dev Biol 243(1):176–184CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hiyoshi W, Sasaki T, Takayama-Watanabe E, Takai H, Watanabe A, Onitake K (2007) Egg jelly of the newt, Cynops pyrrhogaster contains a factor essential for sperm binding to the vitelline envelope. J Exp Zool A Ecol Genet Physiol 307(6):301–311CrossRefPubMedPubMedCentralGoogle Scholar
  43. Infante V, Amirante R, Vaccaro MC, Wilding M, Campanella C (2001) Enzyme activity in anuran spermatozoa upon induction of the acrosome reaction. Zygote 9(4):293–298CrossRefPubMedPubMedCentralGoogle Scholar
  44. Inoda T, Morisawa M (1987) Effect of osmolality on the initiation of sperm motility in Xenopus laevis. Comp Biochem Physiol A Comp Physiol 88(3):539–542CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ishihara K, Hosono J, Kanatani H, Katagiri C (1984) Toad egg-jelly as a source of divalent cations essential for fertilization. Dev Biol 105(2):435–442CrossRefPubMedPubMedCentralGoogle Scholar
  46. Iwao Y (1982) Differential emergence of cortical granule breakdown and electrophysiological responses during meiotic maturation of toad oocytes. Dev Growth Differ 24(5):467–477CrossRefGoogle Scholar
  47. Iwao Y (1985) The membrane potential changes of amphibian eggs during species- and cross-fertilization. Dev Biol 111(1):26–34CrossRefGoogle Scholar
  48. Iwao Y (1987) The spike component of the fertilization potential in the toad, Bufo japonicus: changes during meiotic maturation and absence during cross-fertilization. Dev Biol 123(2):559–565CrossRefPubMedPubMedCentralGoogle Scholar
  49. Iwao Y (1989) An electrically mediated block to polyspermy in the primitive urodele Hynobius nebulosus and phylogenetic comparison with other amphibians. Dev Biol 134(2):438–445CrossRefPubMedPubMedCentralGoogle Scholar
  50. Iwao Y (2000a) Fertilization in amphibians. In: Tarin JJ, Cano A (eds) Fertilization in protozoa and metazoan animal. Springer, Berlin, pp 147–191CrossRefGoogle Scholar
  51. Iwao Y (2000b) Mechanisms of egg activation and polyspermy block in amphibians and comparative aspects with fertilization in other vertebrates. Zool Sci 17(6):699–709CrossRefGoogle Scholar
  52. Iwao Y (2012) Egg activation in physiological polyspermy. Reproduction 144(1):11–22CrossRefGoogle Scholar
  53. Iwao Y (2014) Chapter 15: egg activation in polyspermy: its molecular mechanisms and evolution in vertebrates. In: Sawada H, Inoue N, Iwano M (eds) Sexual reproduction in animals and plants. Springer Open, pp 171–180Google Scholar
  54. Iwao Y, Elinson RP (1990) Control of sperm nuclear behavior in physiologically polyspermic newt eggs: possible involvement of MPF. Dev Biol 142(2):301–312CrossRefGoogle Scholar
  55. Iwao Y, Fujimura T (1996) Activation of Xenopus eggs by RGD-containing peptides accompanied by intracellular Ca2+ release. Dev Biol 177(2):558–567CrossRefPubMedPubMedCentralGoogle Scholar
  56. Iwao Y, Izaki K (2018) Universality and diversity of a fast, electrical block to polyspermy during fertilization in animals. In: Kobayashi K, Kitano T, Iwao Y, Kondo M (eds) Reproductive and developmental strategies. Diversity and commonality in animals. Springer, TokyoGoogle Scholar
  57. Iwao Y, Jaffe LA (1989) Evidence that the voltage-dependent component in the fertilization process is contributed by the sperm. Dev Biol 134(2):446–451CrossRefPubMedPubMedCentralGoogle Scholar
  58. Iwao Y, Katagiri C (1982) Properties of the vitelline coat lysin from toad sperm. J Exp Zool 219(1):87–95CrossRefPubMedPubMedCentralGoogle Scholar
  59. Iwao Y, Masui Y (1995) Activation of newt eggs in the absence of Ca2+ activity by treatment with cycloheximide or D2O. Dev Growth Differ 37:641CrossRefGoogle Scholar
  60. Iwao Y, Yamasaki H, Katagiri C (1985) Experiments pertaining to the suppression of accessory sperm in fertilized newt eggs. Dev Growth Differ 27:323–331CrossRefGoogle Scholar
  61. Iwao Y, Sakamoto N, Takahara K, Yamashita M, Nagahama Y (1993) The egg nucleus regulates the behavior of sperm nuclei as well as cycling of MPF in physiologically polyspermic newt eggs. Dev Biol 160(1):15–27CrossRefPubMedPubMedCentralGoogle Scholar
  62. Iwao Y, Miki A, Kobayashi M, Onitake K (1994) Activation of Xenopus eggs by an extract of Cynops sperm. Dev Growth Differ 36(5):469–479CrossRefGoogle Scholar
  63. Iwao Y, Yasumitsu K, Narihira M, Jiang J, Nagahama Y (1997) Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs. Mol Reprod Dev 47(2):210–221CrossRefPubMedPubMedCentralGoogle Scholar
  64. Iwao Y, Murakawa T, Yamaguchi J, Yamashita M (2002) Localization of gamma-tubulin and cyclin B during early cleavage in physiologically polyspermic newt eggs. Dev Growth Differ 44(6):489–499CrossRefPubMedPubMedCentralGoogle Scholar
  65. Iwao Y, Shiga K, Shiroshita A, Yoshikawa T, Sakiie M, Ueno T, Ueno S, Ijiri TW, Sato K (2014) The need of MMP-2 on the sperm surface for Xenopus fertilization: its role in a fast electrical block to polyspermy. Mech Dev 134:80–95CrossRefPubMedPubMedCentralGoogle Scholar
  66. Jaffe LA, Cross NL, Picheral B (1983) Studies of the voltage-dependent polyspermy block using cross-species fertilization of amphibians. Dev Biol 98(2):319–326CrossRefPubMedPubMedCentralGoogle Scholar
  67. Katagiri C (1962) On the fertilizability of the frog egg, II. Change of the jelly envelopes in water. Jap. J Zool 8:365–374Google Scholar
  68. Katagiri C (1973) Chemical analysis of toad egg-jelly in relation to its ‘sperm-capacitating’ activity. Dev Growth Differ 15:81–92CrossRefGoogle Scholar
  69. Katagiri C (1974) A high frequency of fertilization in premature and mature coelomic toad eggs after enzymic removal removal removal of vitelline membrane. J Embryol Exp Morphol 31(3):573–587PubMedPubMedCentralGoogle Scholar
  70. Katagiri C, Iwao Y, Yoshizaki N (1982) Participation of oviducal pars recta secretions in inducing the acrosome reaction and release of vitelline coat lysin in fertilizing toad sperm. Dev Biol 94(1):1–10CrossRefGoogle Scholar
  71. Katagiri C, Yoshizaki N, Kotani M, Kubo H (1999) Analyses of oviductal pars recta-induced fertilizability of coelomic eggs in Xenopus laevis. Dev Biol 210(2):269–276CrossRefGoogle Scholar
  72. Kline D (1988) Calcium-dependent events at fertilization of the frog egg: injection of a calcium buffer blocks ion channel opening, exocytosis, and formation of pronuclei. Dev Biol 126(2):346–361CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kline D, Nuccitelli R (1985) The wave of activation current in the Xenopus egg. Dev Biol 111(2):471–487CrossRefPubMedPubMedCentralGoogle Scholar
  74. Krapf D, O’Brien E, Maidagan PM, Morales ES, Visconti PE, Arranz SE (2014) Calcineurin regulates progressive motility activation of Rhinella (Bufo) arenarum sperm through dephosphorylation of PKC substrates. J Cell Physiol 229(10):1378–1386CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kubo H, Matsushita M, Kotani M, Kawasaki H, Saido TC, Kawashima S, Katagiri C, Suzuki A (1999) Molecular basis for oviductin-mediated processing from gp43 to gp41, the predominant glycoproteins of Xenopus egg envelopes. Dev Genet 25(2):123–129CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kubo H, Kotani M, Suzuki H, Yoshizaki N (2002) Immunohistochemical localisation of gp69/64 molecules in Xenopus egg envelopes in relation to their sperm binding activity. Zygote 10(2):131–140CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kubo H, Kotani M, Yamamoto Y, Hazato T (2008) Involvement of sperm proteases in the binding of sperm to the vitelline envelope in Xenopus laevis. Zool Sci 25(1):80–87CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kubo H, Shiga K, Harada Y, Iwao Y (2010) Analysis of a sperm surface molecule that binds to a vitelline envelope component of Xenopus laevis eggs. Mol Reprod Dev 77(8):728–735CrossRefPubMedPubMedCentralGoogle Scholar
  79. Larson A, Weisrock DW, Hozak KH (2003) Phylogentice systematics of salamanders (Amphiba: Urodela), a review. In: Sever DM (ed) Reproductive biology and phylogeny of Urodela. Reproductive biology and phylogeny, vol 1. Science Publishers, Plymouth, pp 32–108Google Scholar
  80. Li B, Russell SC, Zhang J, Hedrick JL, Lebrilla CB (2011) Structure determination by MALDI-IRMPD mass spectrometry and exoglycosidase digestions of O-linked oligosaccharides from Xenopus borealis egg jelly. Glycobiology 21(7):877–894CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lindsay LL, Hedrick JL (1989) Proteases released from Xenopus laevis eggs at activation and their role in envelope conversion. Dev Biol 135(1):202–211CrossRefPubMedPubMedCentralGoogle Scholar
  82. Lindsay LL, Hedrick JL (1995) Isolation and characterization of ovochymase, a chymotrypsin-like protease released during Xenopus laevis egg activation. Dev Biol 167(2):513–516CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lindsay LL, Hedrick JL (2004) Proteolysis of Xenopus laevis egg envelope ZPA triggers envelope hardening. Biochem Biophys Res Commun 324(2):648–654CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lindsay LL, Yamasaki H, Hedrick JL, Katagiri C (1988) Egg envelope conversion following fertilization in Bufo japonicus. Dev Biol 130(1):37–44CrossRefGoogle Scholar
  85. Lindsay LL, Larabell CA, Hedrick JL (1992) Localization of a chymotrypsin-like protease to the perivitelline space of Xenopus laevis eggs. Dev Biol 154(2):433–436CrossRefGoogle Scholar
  86. Lindsay LL, Wieduwilt MJ, Hedrick JL (1999a) Oviductin, the Xenopus laevis oviductal protease that processes egg envelope glycoprotein gp43, increases sperm binding to envelopes, and is translated as part of an unusual mosaic protein composed of two protease and several CUB domains. Biol Reprod 60(4):989–995CrossRefGoogle Scholar
  87. Lindsay LL, Yang JC, Hedrick JL (1999b) Ovochymase, a Xenopus laevis egg extracellular protease, is translated as part of an unusual polyprotease. Proc Natl Acad Sci U S A 96(20):11253–11258CrossRefPubMedPubMedCentralGoogle Scholar
  88. Llanos RJ, Barrera D, Valz-Gianinet JN, Miceli DC (2006) Oviductal protease and trypsin treatment enhance sperm-envelope interaction in Bufo arenarum coelomic eggs. J Exp Zool A Comp Exp Biol 305(10):872–882CrossRefGoogle Scholar
  89. Mahbub Hasan AK, Sato K, Sakakibara K, Ou Z, Iwasaki T, Ueda Y, Fukami Y (2005) Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization. Dev Biol 286(2):483–492CrossRefGoogle Scholar
  90. Mahbub Hasan AK, Ou Z, Sakakibara K, Hirahara S, Iwasaki T, Sato K, Fukami Y (2007) Characterization of Xenopus egg membrane microdomains containing uroplakin Ib/III complex: roles of their molecular interactions for subcellular localization and signal transduction. Genes Cells 12(2):251–267CrossRefPubMedGoogle Scholar
  91. Mahbub Hasan AK, Hashimoto A, Maekawa Y, Matsumoto T, Kushima S, Ijiri TW, Fukami Y, Sato K (2014) The egg membrane microdomain-associated uroplakin III-Src system becomes functional during oocyte maturation and is required for bidirectional gamete signaling at fertilization in Xenopus laevis. Development 141(8):1705–1714CrossRefPubMedGoogle Scholar
  92. Martinez ML, Cabada MO (1996) Assessment of the acrosome reaction in Bufo arenarum spermatozoa by immunostaining: comparison with other methods. Zygote 4(3):181–190CrossRefPubMedGoogle Scholar
  93. Matsuda M, Onitake K (1984) Fertilization of the eggs of Cynops pyrrhogaster (japanese newt) after immersion in water. Wilehm Roux Arch Dev Biol 193(2):61–63CrossRefPubMedGoogle Scholar
  94. McLaughlin EW, Humphries AA Jr (1978) The jelly envelopes and fertilization of eggs of the newt, Notophthalmus viridescens. J Morphol 158(1):73–90CrossRefPubMedGoogle Scholar
  95. Medina MF, Crespo CA, Ramos I, Fernández SN (2010) Role of cations as components of jelly coats in Bufo arenarum fertilization. Zygote 18(1):69–80CrossRefPubMedGoogle Scholar
  96. Miwa N (2015a) Dicalcin, a zona pellucida protein that regulates fertilization competence of the egg coat in Xenopus laevis. J Physiol Sci 65(6):507–514CrossRefPubMedGoogle Scholar
  97. Miwa N (2015b) Protein-carbohydrate interaction between sperm and the egg-coating envelope and its regulation by Dicalcin, a Xenopus laevis zona pellucida protein-associated protein. Molecules 20(5):9468–9486CrossRefPubMedPubMedCentralGoogle Scholar
  98. Miwa N, Shinmyo Y, Kawamura S (2007) Cloning and characterization of Xenopus dicalcin, a novel S100-like calcium-binding protein in Xenopus eggs. DNA Seq 18(5):400–404CrossRefPubMedGoogle Scholar
  99. Miwa N, Ogawa M, Shinmyo Y, Hiraoka Y, Takamatsu K, Kawamura S (2010) Dicalcin inhibits fertilization through its binding to a glycoprotein in the egg envelope in Xenopus laevis. J Biol Chem 285(20):15627–15636CrossRefPubMedPubMedCentralGoogle Scholar
  100. Miwa N, Ogawa M, Hanaue M, Takamatsu K (2015a) Corrigendum: fertilization competence of the egg-coating envelope is regulated by direct interaction of dicalcin and gp41, the Xenopus laevis ZP3. Sci Rep 5:15303CrossRefPubMedPubMedCentralGoogle Scholar
  101. Miwa N, Ogawa M, Hanaue M, Takamatsu K (2015b) Fertilization competence of the egg-coating envelope is regulated by direct interaction of dicalcin and gp41, the Xenopus laevis ZP3. Sci Rep 5:12672CrossRefPubMedPubMedCentralGoogle Scholar
  102. Mizote A, Okamoto S, Iwao Y (1999) Activation of Xenopus eggs by proteases: possible involvement of a sperm protease in fertilization. Dev Biol 208(1):79–92CrossRefPubMedGoogle Scholar
  103. Mouguelar VS, Cabada MO, Coux G (2011) The integrin-binding motif RGDS induces protein tyrosine phosphorylation without activation in Bufo arenarum (Amphibia) oocytes. Reproduction 141(5):581–593CrossRefPubMedGoogle Scholar
  104. Nagai K, Ishida T, Hashimoto T, Harada Y, Ueno S, Ueda Y, Kubo H, Iwao Y (2009) The sperm-surface glycoprotein, SGP, is necessary for fertilization in the frog, Xenopus laevis. Dev Growth Differ 51(5):499–510CrossRefPubMedGoogle Scholar
  105. Nuccitelli R, Kline D, Busa WB, Talevi R, Campanella C (1988) A highly localized activation current yet widespread intracellular calcium increase in the egg of the frog, Discoglossus pictus. Dev Biol 130(1):120–132CrossRefPubMedGoogle Scholar
  106. Nuccitelli R, Yim DL, Smart T (1993) The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1, 4, 5)P3. Dev Biol 158(1):200–212CrossRefPubMedGoogle Scholar
  107. O’Brien ED, Krapf D, Cabada MO, Visconti PE, Arranz SE (2011) Transmembrane adenylyl cyclase regulates amphibian sperm motility through protein kinase A activation. Dev Biol 350(1):80–88CrossRefPubMedGoogle Scholar
  108. Ohta M, Kubo H, Nakauchi Y, Watanabe A (2010) Sperm motility-initiating activity in the egg jelly of the externally-fertilizing urodele amphibian, Hynobius lichenatus. Zool Sci 27(11):875–879CrossRefPubMedGoogle Scholar
  109. Olson JH, Chandler DE (1999) Xenopus laevis egg jelly contains small proteins that are essential to fertilization. Dev Biol 210(2):401–410CrossRefPubMedGoogle Scholar
  110. Olson JH, Xiang X, Ziegert T, Kittelson A, Rawls A, Bieber AL, Chandler DE (2001) Allurin, a 21-kDa sperm chemoattractant from Xenopus egg jelly, is related to mammalian sperm-binding proteins. Proc Natl Acad Sci U S A 98(20):11205–11210CrossRefPubMedPubMedCentralGoogle Scholar
  111. Omata S, Katagiri C (1996) Involvement of carbohydrate moieties of the toad egg vitelline coat in binding with fertilizing sperm. Dev Growth Differ 38:663–672CrossRefGoogle Scholar
  112. Penn A, Gledhill BL (1972) Acrosomal proteolytic activity of amphibian sperm. A direct demonstration. Exp Cell Res 74(1):285–288CrossRefGoogle Scholar
  113. Plancke Y, Wieruszeski JM, Alonso C, Boilly B, Strecker G (1995) Structure of four acidic oligosaccharides from the jelly coat surrounding the eggs of Xenopus laevis. Eur J Biochem 231(2):434–439CrossRefPubMedPubMedCentralGoogle Scholar
  114. Prody GA, Greve LC, Hedrick JL (1985) Purification and characterization of an N-acetyl-beta-D-glucosaminidase from cortical granules of Xenopus laevis eggs. J Exp Zool 235(3):335–340CrossRefPubMedPubMedCentralGoogle Scholar
  115. Quill TA, Hedrick JL (1996) The fertilization layer mediated block to polyspermy in Xenopus laevis: isolation of the cortical granule lectin ligand. Arch Biochem Biophys 333(2):326–332CrossRefPubMedPubMedCentralGoogle Scholar
  116. Raisman JS, Cabada MO (1977) Acrosomic reaction and proteolytic activity in the spermatozoa of an anuran amphibian Leptodactylus chaquensis (CEI). Dev Growth Differ 19:227–232CrossRefGoogle Scholar
  117. Raisman JS, Cunio RW, Cabada MO, Del Pino EF, Mariano MI (1980) Acrosome breakdown in Leptodactylus chaquensis (amphibia anura) spermatozoa. Dev Growth Differ 22:289–297CrossRefGoogle Scholar
  118. Ratzan WJ, Evsikov AV, Okamura Y, Jaffe LA (2011) Voltage sensitive phosphoinositide phosphatases of Xenopus: their tissue distribution and voltage dependence. J Cell Physiol 226(11):2740–2746CrossRefPubMedPubMedCentralGoogle Scholar
  119. Reinhart D, Ridgway J, Chandler DE (1998) Xenopus laevis fertilisation: analysis of sperm motility in egg jelly using video light microscopy. Zygote 6(2):173–182CrossRefGoogle Scholar
  120. Sakakibara K, Sato K, Yoshino K, Oshiro N, Hirahara S, Mahbub Hasan AK, Iwasaki T, Ueda Y, Iwao Y, Yonezawa K, Fukami Y (2005) Molecular identification and characterization of Xenopus egg uroplakin III, an egg raft-associated transmembrane protein that is tyrosine-phosphorylated upon fertilization. J Biol Chem 280(15):15029–15037CrossRefPubMedPubMedCentralGoogle Scholar
  121. Sasaki T, Kamimura S, Takai H, Watanabe A, Onitake K (2002) The activity for the induction of the sperm acrosome reaction localises in the outer layers and exists in the high-molecular-weight components of the egg-jelly of the newt, Cynops pyrrhogaster. Zygote 10(1):1–9CrossRefPubMedPubMedCentralGoogle Scholar
  122. Sato K (2014) Transmembrane signal transduction in oocyte maturation and fertilization: focusing on Xenopus laevis as a model animal. Int J Mol Sci 16(1):114–134CrossRefPubMedPubMedCentralGoogle Scholar
  123. Sato K (2018) Fertilization and protein tyrosine kinase signaling: are they merging or emerging? In: Kobayashi K, Kitano T, Iwao Y, Kondo M (eds) Reproductive and developmental strategies. Diversity and commonality in animals. Springer, TokyoGoogle Scholar
  124. Sato K, Iwao Y, Fujimura T, Tamaki I, Ogawa K, Iwasaki T, Tokmakov AA, Hatano O, Fukami Y (1999) Evidence for the involvement of a Src-related tyrosine kinase in Xenopus egg activation. Dev Biol 209(2):308–320CrossRefGoogle Scholar
  125. Sato K, Iwasaki T, Ogawa K, Konishi M, Tokmakov AA, Fukami Y (2002) Low density detergent-insoluble membrane of Xenopus eggs: subcellular microdomain for tyrosine kinase signaling in fertilization. Development 129(4):885–896PubMedGoogle Scholar
  126. Sato K, Tokmakov AA, He CL, Kurokawa M, Iwasaki T, Shirouzu M, Fissore RA, Yokoyama S, Fukami Y (2003) Reconstitution of Src-dependent phospholipase Cγ phosphorylation and transient calcium release by using membrane rafts and cell-free extracts from Xenopus eggs. J Biol Chem 278(40):38413–38420CrossRefGoogle Scholar
  127. Sato T, Yokoe M, Endo D, Morita M, Toyama F, Kawamura Y, Nakauchi Y, Takayama-Watanabe E, Watanabe A (2017) Sperm motility initiating substance may be insufficient to induce forward motility of Cynops ensicauda sperm. Mol Reprod Dev 84(8):686–692CrossRefGoogle Scholar
  128. Schlichter LC, Elinson RP (1981) Electrical responses of immature and mature Rana pipiens oocytes to sperm and other activating stimuli. Dev Biol 83(1):33–41CrossRefPubMedPubMedCentralGoogle Scholar
  129. Sever DM, Hamlett C, Slabach, R, Stephenson B, Verrell PA (2003) Internal fertilization in the anura with special reference to mating and female sperm storage in Ascaphus. In: Jamieson BGM (ed) Reproductive biology and phylogeny of anura. Reproductive biology and phylogeny, vol 2. Science Publishers, Plymouth, pp 319–341Google Scholar
  130. Shilling FM, Magie CR, Nuccitelli R (1998) Voltage-dependent activation of frog eggs by a sperm surface disintegrin peptide. Dev Biol 202(1):113–124CrossRefGoogle Scholar
  131. Snow P, Yim DL, Leibow JD, Saini S, Nuccitelli R (1996) Fertilization stimulates an increase in inositol trisphosphate and inositol lipid levels in Xenopus eggs. Dev Biol 180(1):108–118CrossRefGoogle Scholar
  132. Steinhardt RA, Epel D, Carroll EJ Jr, Yanagimachi R (1974) Is calcium ionophore a universal activator for unfertilised eggs? Nature 252(5478):41–43CrossRefPubMedPubMedCentralGoogle Scholar
  133. Stewart-Savage J, Grey RD (1984) Fertilization of investment-free Xenopus eggs. Exp Cell Res 154(2):639–642CrossRefGoogle Scholar
  134. Stewart-Savage J, Grey RD (1987) Loss of functional sperm entry into Xenopus eggs after activation correlates with a reduction in surface adhesivity. Dev Biol 120(2):434–446CrossRefGoogle Scholar
  135. Stith BJ, Goalstone M, Silva S, Jaynes C (1993) Inositol 1,4,5-trisphosphate mass changes from fertilization through first cleavage in Xenopus laevis. Mol Biol Cell 4(4):435–443CrossRefPubMedPubMedCentralGoogle Scholar
  136. Stith BJ, Espinoza R, Roberts D, Smart T (1994) Sperm increase inositol 1,4,5-trisphosphate mass in Xenopus laevis eggs preinjected with calcium buffers or heparin. Dev Biol 165(1):206–215CrossRefGoogle Scholar
  137. Strecker G, Wieruszeski JM, Plancke Y, Boilly B (1995) Primary structure of 12 neutral oligosaccharide-alditols released from the jelly coats of the anuran Xenopus laevis by reductive beta-elimination. Glycobiology 5(1):137–146CrossRefPubMedPubMedCentralGoogle Scholar
  138. Sugiyama H, Burnett L, Xiang X, Olson J, Willis S, Miao A, Akema T, Bieber AL, Chandler DE (2009) Purification and multimer formation of allurin, a sperm chemoattractant from Xenopus laevis egg jelly. Mol Reprod Dev 76(6):527–536CrossRefGoogle Scholar
  139. Takahashi T, Kutsuzawa M, Shiba K, Takayama-Watanabe E, Inaba K, Watanabe A (2013) Distinct Ca2+ channels maintain a high motility state of the sperm that may be needed for penetration of egg jelly of the newt, Cynops pyrrhogaster. Dev Growth Differ 55(7):657–667CrossRefPubMedPubMedCentralGoogle Scholar
  140. Takayama-Watanabe E, Campanella C, Kubo H, Watanabe A (2012) Sperm motility initiation by egg jelly of the anuran, Discoglossus pictus may be mediated by sperm motility-initiating substance of the internally-fertilizing newt, Cynops pyrrhogaster. Zygote 20(4):417–422CrossRefPubMedPubMedCentralGoogle Scholar
  141. Takayama-Watanabe E, Ochiai H, Tanino S, Watanabe A (2015) Contribution of different Ca(2)(+) channels to the acrosome reaction-mediated initiation of sperm motility in the newt Cynops pyrrhogaster. Zygote 23(3):342–351CrossRefPubMedPubMedCentralGoogle Scholar
  142. Talevi R, Dale B, Campanella C (1985) Fertilization and activation potentials in Discoglossus pictus (Anura) eggs: a delayed response to activation by pricking. Dev Biol 111(2):316–323CrossRefGoogle Scholar
  143. Tian J, Gong H, Thomsen GH, Lennarz WJ (1997a) Gamete interactions in Xenopus laevis: identification of sperm binding glycoproteins in the egg vitelline envelope. J Cell Biol 136(5):1099–1108CrossRefPubMedPubMedCentralGoogle Scholar
  144. Tian J, Gong H, Thomsen GH, Lennarz WJ (1997b) Xenopus laevis sperm-egg adhesion is regulated by modifications in the sperm receptor and the egg vitelline envelope. Dev Biol 187(2):143–153CrossRefPubMedPubMedCentralGoogle Scholar
  145. Tokmakov AA, Stefanov VE, Iwasaki T, Sato K, Fukami Y (2014) Calcium signaling and meiotic exit at fertilization in Xenopus egg. Int J Mol Sci 15(10):18659–18676CrossRefPubMedPubMedCentralGoogle Scholar
  146. Tseng K, Lindsay LL, Penn S, Hedrick JL, Lebrilla CB (1997) Characterization of neutral oligosaccharide-alditols from Xenopus laevis egg jelly coats by matrix-assisted laser desorption Fourier transform mass spectrometry. Anal Biochem 250(1):18–28CrossRefPubMedPubMedCentralGoogle Scholar
  147. Tseng K, Xie Y, Seeley J, Hedrick JL, Lebrilla CB (2001) Profiling with structural elucidation of the neutral and anionic O-linked oligosaccharides in the egg jelly coat of Xenopus laevis by Fourier transform mass spectrometry. Glycoconj J 18(4):309–320CrossRefPubMedPubMedCentralGoogle Scholar
  148. Ueda Y, Yoshizaki N, Iwao Y (2002) Acrosome reaction in sperm of the frog, Xenopus laevis: its detection and induction by oviductal pars recta secretion. Dev Biol 243(1):55–64CrossRefPubMedPubMedCentralGoogle Scholar
  149. Ueda Y, Kubo H, Iwao Y (2003) Characterization of the acrosome reaction-inducing substance in Xenopus (ARISX) secreted from the oviductal pars recta onto the vitelline envelope. Dev Biol 264(1):289–298CrossRefPubMedPubMedCentralGoogle Scholar
  150. Ueda Y, Imaizumi C, Kubo H, Sato K, Fukami Y, Iwao Y (2007) Analysis of terminal sugar moieties and species-specificities of acrosome reaction-inducing substance in Xenopus (ARISX). Dev Growth Differ 49(7):591–601CrossRefPubMedPubMedCentralGoogle Scholar
  151. Ueno T, Ohgami T, Harada Y, Ueno S, Iwao Y (2014) Egg activation in physiologically polyspermic newt eggs: involvement of IP(3) receptor, PLCgamma, and microtubules in calcium wave induction. Int J Dev Biol 58(5):315–323CrossRefPubMedPubMedCentralGoogle Scholar
  152. Vo LH, Hedrick JL (2000) Independent and hetero-oligomeric-dependent sperm binding to egg envelope glycoprotein ZPC in Xenopus laevis. Biol Reprod 62(3):766–774CrossRefPubMedPubMedCentralGoogle Scholar
  153. Vo LH, Yen TY, Macher BA, Hedrick JL (2003) Identification of the ZPC oligosaccharide ligand involved in sperm binding and the glycan structures of Xenopus laevis vitelline envelope glycoproteins. Biol Reprod 69(6):1822–1830CrossRefPubMedPubMedCentralGoogle Scholar
  154. Wakimoto BT (1979) DNA synthesis after polyspermic fertilization in the axolotl. J Embryol Exp Morphol 52:39–48PubMedPubMedCentralGoogle Scholar
  155. Watabe M, Izaki K, Fujino S, Maruyama M, Kojima C, Hiraiwa A, Ueno S, Iwao Y (2019) The electrical block to polyspermy induced by an intracellular Ca2+ increase at fertilization of the clawed frogs, Xenopus laevis and Xenopus tropicalis. Mol Reprod Dev 86:387–403CrossRefPubMedPubMedCentralGoogle Scholar
  156. Watanabe A, Onitake K (2003) Sperm activation. In: Sever DM (ed) Reproductive biology and phylogeny of Urodel. Reproductive biology and phylogeny, vol 1. Science Publishers, Plymouth, pp 425–445Google Scholar
  157. Watanabe T, Itoh T, Watanabe A, Onitake K (2003) Characteristics of sperm motility induced on the egg-jelly in the internal fertilization of the newt, Cynops pyrrhogaster. Zool Sci 20(3):345–352CrossRefPubMedPubMedCentralGoogle Scholar
  158. Watanabe A, Fukutomi K, Kubo H, Ohta M, Takayama-Watanabe E, Onitake K (2009) Identification of egg-jelly substances triggering sperm acrosome reaction in the newt, Cynops pyrrhogaster. Mol Reprod Dev 76(4):399–406CrossRefPubMedPubMedCentralGoogle Scholar
  159. Watanabe T, Kubo H, Takeshima S, Nakagawa M, Ohta M, Kamimura S, Takayama-Watanabe E, Watanabe A, Onitake K (2010) Identification of the sperm motility-initiating substance in the newt, Cynops pyrrhogaster, and its possible relationship with the acrosome reaction during internal fertilization. Int J Dev Biol 54(4):591–597CrossRefPubMedPubMedCentralGoogle Scholar
  160. Webb DJ, Nuccitelli R (1985) Fertilization potential and electrical properties of the Xenopus laevis egg. Dev Biol 107(2):395–406CrossRefPubMedPubMedCentralGoogle Scholar
  161. Wilkinson M, Nussbaum RA (2006) Caecilian phylogeny and classification. In: Exbrayat JM (ed) Reproductive biology and phylogeny of Gymnophiona: (caecilians). Reproductive biology and phylogeny, vol 5. Science Publishers, Plymouth, pp 39–78Google Scholar
  162. Wolf DP, Hedrick JL (1971) A molecular approach to fertilization. 3. Development of a bioassay for sperm capacitation. Dev Biol 25(3):360–376CrossRefPubMedPubMedCentralGoogle Scholar
  163. Wozniak KL, Mayfield BL, Duray AM, Tembo M, Beleny DO, Napolitano MA, Sauer ML, Wisner BW, Carlson AE (2017) Extracellular Ca2+ is required for fertilization in the African clawed frog, Xenopus laevis. PLoS One 12(1):e0170405CrossRefPubMedPubMedCentralGoogle Scholar
  164. Wozniak KL, Phelps WA, Tembo M, Lee MT, Carlson AE (2018a) The TMEM16A channel mediates the fast polyspermy block in Xenopus laevis. J Gen Physiol 150(9):1249–1259CrossRefPubMedPubMedCentralGoogle Scholar
  165. Wozniak KL, Tembo M, Phelps WA, Lee MT, Carlson AE (2018b) PLC and IP3-evoked Ca2+ release initiate the fast block to polyspermy in Xenopus laevis eggs. J Gen Physiol 150(9):1239–1248CrossRefPubMedPubMedCentralGoogle Scholar
  166. Xiang X, Burnett L, Rawls A, Bieber A, Chandler D (2004) The sperm chemoattractant “allurin” is expressed and secreted from the Xenopus oviduct in a hormone-regulated manner. Dev Biol 275(2):343–355CrossRefPubMedPubMedCentralGoogle Scholar
  167. Xiang X, Kittelson A, Olson J, Bieber A, Chandler D (2005) Allurin, a 21 kD sperm chemoattractant, is rapidly released from the outermost jelly layer of the Xenopus egg by diffusion and medium convection. Mol Reprod Dev 70(3):344–360CrossRefPubMedPubMedCentralGoogle Scholar
  168. Yamamoto S, Yamashita M, Iwao Y (1999) Rise of intracellular Ca2+ level causes the decrease of cyclin B1 and Mos in the newt eggs at fertilization. Mol Reprod Dev 53(3):341–349CrossRefPubMedPubMedCentralGoogle Scholar
  169. Yamamoto S, Kubota HY, Yoshimoto Y, Iwao Y (2001) Injection of a sperm extract triggers egg activation in the newt Cynops pyrrhogaster. Dev Biol 230(1):89–99CrossRefPubMedPubMedCentralGoogle Scholar
  170. Yamasaki H, Takamune K, Katagiri C (1988) Classification, inhibition, and specificity studies of the vitelline coat lysin from toad sperm. Gamete Res 20(3):287–300CrossRefPubMedPubMedCentralGoogle Scholar
  171. Yokoe M, Sano M, Shibata H, Shibata D, Takayama-Watanabe E, Inaba K, Watanabe A (2014) Sperm proteases that may be involved in the initiation of sperm motility in the newt, Cynops pyrrhogaster. Int J Mol Sci 15(9):15210–15224CrossRefPubMedPubMedCentralGoogle Scholar
  172. Yokoe M, Takayama-Watanabe E, Saito Y, Kutsuzawa M, Fujita K, Ochi H, Nakauchi Y, Watanabe A (2016) A novel cysteine knot protein for enhancing sperm motility that might facilitate the evolution of internal fertilization in amphibians. PLoS One 11(8):e0160445CrossRefPubMedPubMedCentralGoogle Scholar
  173. Yoshizaki N (1989a) Comparison of two lectins isolated from Xenopus cortical granules. Zool Sci 6:507–514Google Scholar
  174. Yoshizaki N (1989b) Immunoelectron microscopic demonstration of cortical granule lectins in coelomic, unfertilized and fertilized eggs of Xenopus laevis. Dev Growth Differ 31(4):325–330CrossRefGoogle Scholar
  175. Yoshizaki N, Katagiri C (1981) Oviducal contribution to alteration of the vitelline coat in the frog Rana japonica: an electron microscopic study. Dev Growth Differ 23:495–506CrossRefGoogle Scholar
  176. Zhang J, Xie Y, Hedrick JL, Lebrilla CB (2004) Profiling the morphological distribution of O-linked oligosaccharides. Anal Biochem 334(1):20–35CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Laboratory of Reproductive Developmental Biology, Division of Earth Sciences, Biology, and Chemistry, Graduate School of Sciences and Technology for InnovationYamaguchi University, YamaguchiYamaguchiJapan

Personalised recommendations