Advertisement

Chapter 9 Self- and Nonself-Recognition of Gametes in Ascidians

  • Hitoshi SawadaEmail author
  • Maki Shirae-Kurabayashi
Chapter
  • 16 Downloads

Abstract

Ascidians (Tunicata) are hermaphroditic sessile marine invertebrates, which release sperm and eggs nearly simultaneously to the surrounding seawater during the spawning season. To avoid inbreeding, several species, including Halocynthia roretzi (Stolidobranchia) and Ciona intestinalis type A (Ciona robusta) (Phlebobranchia) possess a self-sterility system. In H. roretzi, a 70-kDa vitelline coat (VC) protein consisting of 12 EGF-like repeats with polymorphisms, designated as VC70, appears to be involved in gamete interaction and also in self/nonself-recognition. A cysteine-rich secretory protein, designated as Urabin and a type II transmembrane serine protease-1, called TTSP-1, are candidate sperm-borne binding partners for VC70. In C. intestinalis type A, on the other hand, a fibrinogen-like VC protein, v-Themis-A and v-Themis-B, and sperm PKDREJ-like protein, s-Themis-A and s-Themis-B, are highly polymorphic among individuals and these proteins appear to play a pivotal role in self/nonself-recognition during gamete interaction. It was recently suggested that three pairs of v-Themis and s-Themis genes (s/v-Themis-A, s/v-Themis-B, and s/v-Themis-B2) are responsible for this system. After sperm attachment to the VC of self-eggs, drastic Ca2+ influx is elicited, resulting in sperm vigorous movement on the VC followed by sperm detachment from the VC, or by cessation in sperm motility. The C-terminal Ca2+-permeable cation channel domain in s-Themis-B/B2 may be involved in Ca2+ influx. Although s/v-Themis homologous genes with polymorphisms were detected in the genome of H. roretzi, it is not known whether s/v-Themis is involved in self/nonself-recognition of H. roretzi. Since flowering plants utilize family specific S-determinant proteins for self-incompatibility, the mechanism of self/nonself-recognition may be different between stolidobranch and phlebobranch ascidians.

Keywords

Sperm lysin Proteasome Fertilization Self/nonself Self-incompatibility Ascidian 

Notes

Acknowledgements

This work was supported in part by Grant-in-aid for Scientific Research (B) (JP17H03672) from JSPS and by Grant-in-aid for Scientific Research on Innovative Areas (JP21112001, 21112002) from MEXT, Japan. We are grateful to Gretchen Lambert of University of Washington Friday Harbor Labs for her critical reading of this mauscript.

References

  1. Akasaka M, Harada Y, Sawada H (2010) Vitellogenin C-terminal fragments participate in fertilization as egg-coat binding partners of sperm trypsin-like proteases in the ascidian Halocynthia roretzi. Biochem Biophys Res Commun 392:479–484CrossRefPubMedGoogle Scholar
  2. Akasaka M, Kato KH, Kitajima K, Sawada H (2013) Identification of novel isoforms of vitellogenin expressed in ascidian eggs. J Exp Zool B Mol Dev Evol 320:118–128CrossRefPubMedGoogle Scholar
  3. Artavanis-Tsakonas S, Matsumoto K, Fortini ME (1995) Notch signaling. Science 268:225–232CrossRefPubMedGoogle Scholar
  4. Ban S, Harada Y, Yokosawa H, Sawada H (2005) Highly polymorphic vitelline-coat protein HaVC80 from the ascidian, Halocynthia aurantium: structural analysis and involvement in self/nonself recognition during fertilization. Dev Biol 286:440–451CrossRefPubMedGoogle Scholar
  5. Brozovic M, Martin C, Dantec C, Dauga D, Mendez M, Simion P, Percher M, Laporte B, Scornavacca C, Di Gregorio A, Fujiwara S, Gineste M, Lowe EK, Piette J, Racioppi C, Ristoratore F, Sasakura Y, Takatori N, Brown TC, Delsuc F, Douzery E, Gissi C, McDougall A, Nishida H, Sawada H, Swalla BJ, Yasuo H, Lemaire P (2016) Aniseed 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acid Res 44(D1):D808–D818CrossRefPubMedGoogle Scholar
  6. Brunetti R, Gissi C, Pennati R, Caicci F, Gasparini F, Manni L (2015) Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J Zool Syst Evol Res 53:186–193CrossRefGoogle Scholar
  7. De Nettancourt D (1977) Incompatibility in angiosperms. In: Frankel R, Gall GAE, Grossman M, Linskens HF, De Zeeuw D (eds) Monographs on theoretical and applied genetics 3. Springer, Berlin, pp 1–230.  https://doi.org/10.1007/978-3-662-12051-4CrossRefGoogle Scholar
  8. De Santis R, Pinto MR, Cotellin F, Rosati F, Monroy A, D’Alessio G (1983) A fucosyl glycoprotein component with sperm receptor and sperm-activating activity from the vitelline coat of Ciona intestinalis eggs. Exp Cell Res 148:508–513CrossRefPubMedGoogle Scholar
  9. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298(5601):2157–2167CrossRefPubMedGoogle Scholar
  10. Fuke TM (1983) Self and nonself recognition between gametes of the ascidian, Halocynthia roretzi. Rouxs Arch Dev Biol 192:347–352CrossRefGoogle Scholar
  11. Fuke M, Numakunai M (1996) Establishment of self-sterility of eggs in the ovary of the solitary ascidian, Halocynthia roretzi. Rouxs Arch Dev Biol 205:391–400CrossRefPubMedGoogle Scholar
  12. Fuke M, Numakunai T (1999) Self-sterility of eggs induced by exogenous and endogenous protease in the solitary ascidian Halacynthia roretzi. Mol Reprod Dev 52:99–106CrossRefGoogle Scholar
  13. Harada Y, Sawada H (2007) Proteins interacting with the ascian vitelline-coat sperm receptor HrVC70 as revealed by yeast two-hybrid screening. Mol Reprod Dev 74:1178–1187CrossRefPubMedPubMedCentralGoogle Scholar
  14. Harada Y, Sawada H (2008) Allorecognition mechanisms during ascidian fertilization. Int J Dev Biol 52:637–645CrossRefPubMedPubMedCentralGoogle Scholar
  15. Harada Y, Takagaki Y, Sugnagawa M, Saito T, Yamada L, Taniguchi H, Shobuchi E, Sawada H (2008) Mechanism of self-sterility in a hermaphroditic chordate. Science 320:548–550CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hoshi M (1986) Sperm glycosidase as a plausible mediator of sperm binding to the vitelline envelope in ascidians. Adv Exp Med Biol 207:251–260PubMedPubMedCentralGoogle Scholar
  17. Iwano M, Takayama S (2012) Self/non-self discrimination in angiosperm self-incompatibility. Curr Opin Plant Biol 15:78–83CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kawai N, Ochiai H, Sakuma T, Yamada L, Sawada H, Yamamoto T, Sasakura Y (2012) Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases. Dev Growth Differ 54:535–545CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kawamura K, Nomura M, Kameda T, Shimamoto H, Nakauchi M (1991) Self-nonself recognition activity extracted from self-sterile eggs of the ascidian, Ciona intestinalis. Dev Growth Differ 33:139–148CrossRefGoogle Scholar
  20. Lambert CC, Koch R (1988) Sperm binding and penetration during ascidian fertilization. Dev Growth Differ 30:325–336CrossRefGoogle Scholar
  21. Marino R, Pinto MR, Cotelli F, Lamia CL, De Santis R (1998) The hsp70 protein is involved in the acquisition of gamete self-sterility in the ascidian Ciona intestinalis. Development 125:899–907PubMedGoogle Scholar
  22. Marino R, De Santis R, Giuliano P, Pinto MR (1999) Follicle cell proteasome activity and acid extract from the egg vitelline coat prompt the onset of self-sterility in Ciona intestinalis oocytes. Proc Natl Acad Sci U S A 96:9633–9636CrossRefPubMedPubMedCentralGoogle Scholar
  23. Matsumoto M, Hirata J, Hirohashi N, Hoshi M (2002) Sperm-egg binding mediated by sperm alpha-L-fucosidase in the ascidian, Halocynthia roretzi. Zool Sci 19:43–48CrossRefPubMedGoogle Scholar
  24. Mino M, Sawada H (2016) Follicle cell trypsin-like protease HrOvochymase: its cDNA cloning, localization, and involvement in the late stage of oogenesis and in the ascidian Halocynthia roretzi. Mol Reprod Dev 83:347–358CrossRefPubMedGoogle Scholar
  25. Morgan TH (1910) Cross- and self-fertilization in Ciona intestinalis. Wilhelm Roux Arch Entwick Mech Org 30:206–235Google Scholar
  26. Morgan TH (1923) Removal of the block to self-fertilization in the ascidian Ciona. Proc Natl Acad Sci U S A 9:170–171CrossRefPubMedPubMedCentralGoogle Scholar
  27. Morgan TH (1939) The genetic and the physiological problems of self-sterility in Ciona. III. Induced self-fertilization. J Exp Zool 80:19–54CrossRefGoogle Scholar
  28. Morgan TH (1942) The genetic and the physiological problems of self-sterility in Ciona. V. The genetic problem. J Exp Zool 90:199–228CrossRefGoogle Scholar
  29. Morgan TH (1944) The genetic and the physiological problems of self-sterility in Ciona. VI. Theoretical discussion of genetic data. J Exp Zool 95:37–59CrossRefGoogle Scholar
  30. Murabe N, Hoshi M (2002) Re-examination of sibling cross-sterility in the ascidian, Ciona intestinalis: genetic background of the self-sterility. Zool Sci 19:527–538CrossRefPubMedGoogle Scholar
  31. Numakunai T, Hoshino Z (1980) Periodic spawning of three types of the ascidian, Halocynthia roretzi (Drasche), under continuous light conditions. J Exp Zool 212:381–387CrossRefGoogle Scholar
  32. Otsuka K, Yamada L, Sawada H (2013) cDNA cloning, localization, and candidate binding partners of acid-extractable vitelline-coat protein Ci-v-Themis-like in the ascidian Ciona intestinalis. Mol Reprod Dev 80:840–848CrossRefPubMedGoogle Scholar
  33. Pinto MR, De Stantis R, Marino R, Usui N (1995) Specific induction of self-discrimination by follicle cells in Ciona intestinalis. Dev Growth Differ 37:287–291CrossRefGoogle Scholar
  34. Rosati F, De Santis R (1978) Studies on fertilization in the ascidains I. Self-sterility and specific recognition between gametes of Ciona intestinalis. Exp Cell Res 112:111–119CrossRefPubMedGoogle Scholar
  35. Rosati F, De Santis R (1980) Role of the surface carbohydrates in sperm-egg interaction in Ciona intestinalis. Nature 283:762–764CrossRefPubMedGoogle Scholar
  36. Saito T, Shiba K, Inaba K, Yamada L, Sawada H (2012) Self-incompatibility response induced by calcium increase in sperm of the ascidian Ciona intestinalis. Proc Natl Acad Sci U S A 109:4158–4162CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T (2013) Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18:315–326CrossRefPubMedPubMedCentralGoogle Scholar
  38. Satou Y, Kawashima T, Shoguchi E, Nakayama A, Satoh N (2005) An integrated database of the ascidian, Ciona intestinal: towards functional genomics. Zool Sci 22:837–843CrossRefPubMedGoogle Scholar
  39. Satou Y, Hirayama K, Mita K, Fujie M, Chiba S, Yoshida R, Endo T, Sasakura Y, Inaba K, Satoh N (2014) Sustained heterozygosity across a self-incompatibility locus in a inbred ascidian. Mol Biol Evol 32:81–90CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sawada H (2002) Ascidian sperm lysin system. Zool Sci 19:139–151CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sawada H, Sakai N, Abe Y, Tanaka E, Takahashi Y, Fujino J, Kodama E, Takizawa S, Yokosawa H (2002) Extracellular ubiquitination and proteasome-mediated degradation of the ascidian sperm receptor. Proc Natl Acad Sci U S A 99:1223–1228CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sawada H, Tanaka E, Ban S, Yamasaki C, Fujino J, Ooura K, Abe Y, Matsumoto K, Yokosawa H (2004) Self/nonself recognition in ascidian fertilization: vitelline coat protein HrVC70 is a candidate allorecognition molecule. Proc Natl Acad Sci U S A 101:15615–15620CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sawada H, Morita M, Iwano M (2014) Self/non-self recognition mechanisms in sexual reproduction: new insight into the self-incompatibility system shared by flowering plants and hermaphroditic animals. Biochem Biophys Res Commun 450:1142–1148CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sawada H, Nakazawa S, Shirae-Kurabayashi M (2017) Ascidian sexual reproductive strategies: mechanisms of sperm-egg interaction and self-sterility. In: Kobayashi K et al (eds) Reproductive and developmental strategies, diversity and community in animals. Springer, Tokyo, pp 479–497Google Scholar
  45. Sawada H, Yamamoto K, Yamaguchi A, Yamada L, Higuchi A, Nukaya H, Fukuoka M, Sakuma T, Yamamoto T, Sasakura Y, Shirae-Kurabayashi M (2020) Three multi-allelic gene pairs are responsible for selfsterility in the ascidian Ciona intestinalis. Sci Rep 10:2514Google Scholar
  46. Takayama S, Isogai A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56:467–489CrossRefPubMedGoogle Scholar
  47. Urayama S, Harada Y, Nakagawa Y, Ban S, Akasaka M, Kawasaki N, Sawada H (2008) Ascidian sperm glycosylphosphatidylinositol-anchored CRISP-like protein as a binding partner for an allorecognizable sperm receptor on the vitelline coat. J Biol Chem 283:21725–21733CrossRefPubMedGoogle Scholar
  48. Yamada L, Saito T, Taniguchi H, Sawada H, Harada Y (2009) Comprehensive egg coat proteome of the ascidian Ciona intestinalis reveals gamete recognition molecules involved in self-sterility. J Biol Chem 284:9402–9410CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yamaguchi A, Saito T, Yamada L, Taniguchi H, Harada Y, Sawada H (2011) Identification and localization of the sperm CRISP family protein CiUrabin involved in gamete interaction in the ascidian Ciona intestinalis. Mol Reprod Dev 78:488–497CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Sugashima Marine Biological LaboratoryGraduate School of Science, Nagoya UniversityTobaJapan

Personalised recommendations