Advertisement

Material Selection Techniques in Materials for Electronics

  • Navneet GuptaEmail author
  • Kavindra Kandpal
Chapter
  • 21 Downloads
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

Material selection is an important step prior to the actual fabrication of any electronic device. Owing to the availability of large set of materials, it is important to select the best possible material in order to enhance the performance of a device. Material selection approaches provide an easy way to recognize the trade-offs between conflicting materials properties and also to select the optimal material for better device performance. In addition to this, these approaches also help us to provide ranking to the alternatives from best to worst. Therefore, these approaches provide a platform to select and prioritize the possible materials and also provide support to perform rigorous evaluation of the possible alternatives. This chapter describes material selection methodologies in detail and explains the steps to be taken for each methodology to find out the most promising material for a given device.

References

  1. 1.
    Ashby MF (2000) Multi-objective optimization in material design and selection. Acta Mater 48(1):359–369CrossRefGoogle Scholar
  2. 2.
    Ashby MF, Cebon D (1993) Materials selection in mechanical design. Le J Phys IV 3(C7):C7–1Google Scholar
  3. 3.
    Opricovic S, Tzeng G-H (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156(2):445–455CrossRefGoogle Scholar
  4. 4.
    Sharma P, Gupta N (2015) Investigation on material selection for gate dielectric in nanocrystalline silicon (nc-Si) top-gated thin film transistor (TFT) using Ashby’s, VIKOR and TOPSIS. J Mater Sci Mater Electron 26(12):9607–9613CrossRefGoogle Scholar
  5. 5.
    Gupta N, Ashwin R (2018) Material selection methodology for radio frequency (RF) microelectromechanical (MEMS) capacitive shunt switch. Microsystem Technologies. Springer-Nature, 2018.  https://doi.org/10.1007/s00542-018-3761-1
  6. 6.
    Gupta Navneet, Haldiya Varun (2018) High-k gate dielectric selection for Germanium based CMOS Devices. Int J Nanoelectron Mater 11(2):119–126Google Scholar
  7. 7.
    Kandpal Kavindra, Gupta Navneet (2016) Investigations on high-κ dielectrics for low threshold voltage and low leakage zinc oxide thin-film transistor, using material selection methodologies. J Mater Sci Mater Electron Springer 27(6):5972–5981CrossRefGoogle Scholar
  8. 8.
    Sundarama GM, Angiraa M, Guptaa N, Rangra K (2016) Material selection for CMOS compatible high Q and high frequency MEMS disk resonator using Ashby’s approach. Int J Nanoelectron Mater Malaysia 9:157–164Google Scholar
  9. 9.
    Gupta Navneet, Mishra Abhinav (2016) Selection of substrate material for hybrid microwave integrated circuits (HMICs). Energetika 62:78–86CrossRefGoogle Scholar
  10. 10.
    Sharma Prachi, Gupta Navneet (2015) Investigation on material selection for gate dielectric in nanocrystalline silicon (nc-Si) thin-film transistors (TFTs) using Ashby’s, VIKOR and TOPSIS. J Mater Sci Mater Electron Springer, Berlin 26:9607–9613CrossRefGoogle Scholar
  11. 11.
    Gupta N, Mishra A (2015) Material selection methodology for minimizing direct tunneling in nanowire transistors. J Electr Dev Perpignan University, France, 21:1811–1815Google Scholar
  12. 12.
    Kumar Jitendra, Gupta Navneet (2015) Investigation on microwave dielectric materials for dielectric resonator antennas. Int J Appl Electromag Mech IOS Press, Japan 47:263–272.  https://doi.org/10.3233/JAE-140051CrossRefGoogle Scholar
  13. 13.
    Choudhary P, Kumar R, Gupta N (2014) Dielectric material selection of microstrip patch antenna for wireless communication applications using Ashby’s Approach. Int J Microw Wireless Technol Cambridge University Press and European Microwave Association.  https://doi.org/10.1017/s1759078714000877. Published July 14, 2014CrossRefGoogle Scholar
  14. 14.
    Sharma AK, Gupta N (2012) Material selection of RF-MEMS switch used for reconfigurable antenna using Ashby’s methodology. Prog Electromagnet Res Lett (PIER-L), 31:147–157CrossRefGoogle Scholar
  15. 15.
    Aditya BN, Gupta N (2012) Material selection methodology for gate dielectric material in metal-oxide-semiconductor devices. Mater Design 35:696–700CrossRefGoogle Scholar
  16. 16.
    Gupta N (2011) Material selection for thin-film solar cells using multiple attribute decision making approach. Mater Design 32:1667–1671CrossRefGoogle Scholar
  17. 17.
    Parate O, Gupta N (2011) Material selection for electrostatic microactuators using Ashby approach. Mater Design 32:1577–1581CrossRefGoogle Scholar
  18. 18.
    Reddy GP, Gupta N (2010) Material selection for microelectronic heat sinks: an application of the Ashby approach. Mater Design 31:113–117Google Scholar
  19. 19.
    Wilk GD, Wallace RM, Anthony J (2001) High-κ gate dielectrics: current status and materials properties considerations. J Appl Phys 89(10):5243–5275CrossRefGoogle Scholar
  20. 20.
    Association SI (2006) International technology roadmap for semiconductors. http//www.itrs.netGoogle Scholar
  21. 21.
    Huang AP, Yang ZC, Chu PK (2010) Hafnium-based high-k gate dielectrics. Advanc Solid State Circuit Technol. InTechGoogle Scholar
  22. 22.
    Yeo YC, King TJ, Hu C (2003) MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations. IEEE Trans Electron Devices 50(4):1027–1035CrossRefGoogle Scholar
  23. 23.
    Yamamoto N, Makino H, Yamamoto T (2011) Young’s modulus and coefficient of linear thermal expansion of ZnO conductive and transparent ultra-thin films. Adv Mater Sci EngGoogle Scholar
  24. 24.
    Qian LX, Lai PT, Tang WM (2014) Effects of Ta incorporation in La2O3 gate dielectric of InGaZnO thin-film transistor. Appl Phys Lett 104(12):1–6CrossRefGoogle Scholar
  25. 25.
    Ji L-W et al (2013) Characteristics of flexible thin-film transistors with ZnO channels. IEEE Sens J 13(12):4940–4943CrossRefGoogle Scholar
  26. 26.
    Lee JS, Chang S, Koo SM, Lee SY (2010) High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature. IEEE Electron Device Lett 31(3):225–227CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.BITS-PilaniRajasthanIndia

Personalised recommendations