Advertisement

Gyro-stabilized Platform in Ambulance

  • T. VigneshEmail author
  • S. Madhankumar
  • P. Anand Raj
  • Anirudh Varadarajan
  • T. Arul Praveen
Conference paper
  • 25 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 626)

Abstract

The objective of this process is to develop a platform which is installed in an ambulance that can maintain its position perpendicular to gravitational force, irrespective of the position of the ambulance using servo motors which are placed perpendicular to each other. In this prototype, Arduino Mega 2560 Rev3 microcontroller is used to process the input from MPU-6050 inertial measurement unit. The code in Arduino 2560 Mega controller Rev3 analysis the input data, and when the C code receives the input from MPU and analyzes the angle and gives an output to the MG995 servo motor, it receives the signals and moves to the corresponding coordinates, so the movement of the vehicle will be nullified, for example, if the vehicle tilts 20 degrees with respect to x-axis, the servo motor moves −20 degrees with respect to x-axis.

Keywords

Gyro MPU Stabilized platform 

References

  1. 1.
    S. Turalkar, O. Padvekar, N. Chavan, P. Sawant, Self stabilizing platform. Int. J. Innov. Res. Technol. 3(11), 220–224 (2017)Google Scholar
  2. 2.
    S. Li, Y. Gao, G. Meng, G. Wang, L. Guan, Accelerometer-based gyroscope drift compensation approach in a dual-axial stabilization platform. Electronics 8(5), 1–12 (2019)Google Scholar
  3. 3.
    Z. Yao, J. Liu, Y. LI, X. LI, Z.-Y. Zhang, Design and implementation of a flexible GYRO stabilized platform. Adv. Comput. Sci. Res. 75, 810–816 (2018)Google Scholar
  4. 4.
    R. Votrubec, Stabilization of platform using gyroscope. Procedia Eng. 69, 410–414 (2014)CrossRefGoogle Scholar
  5. 5.
    B. Ave, MPU-6000/MPU-6050 product specification. InvenSense 1(408), 1–54 (2012)Google Scholar
  6. 6.
    Bizdev, Arduino mega 2560. ardunio.cc (2019)Google Scholar
  7. 7.
    T. Vignesh, P. Karthikeyan, and S. Sridevi, Modeling and trajectory generation of bionic hand for dexterous task, in IEEE international conference on intelligent techniques in control, optimization and signal processing, pp. 1–6 (2017)Google Scholar
  8. 8.
    H. Speed, M. Gear, D. Ball, B. Servo, MG995 high speed metal gear dual ball bearing servo, vol. 6 (Electronicos Caldas, Columbia, 2018). P. 1–8Google Scholar
  9. 9.
    T. Vignesh, N. Manikandan, S. Kannaki, C. Prasath, M. Bhuvaneswari, S. Vignesh, Development of low-cost robotic arm for welding. Int. J. Innov. Technol. Explor. Eng. 8(8), 1238–1243 (2019)Google Scholar
  10. 10.
    R.H. Bartlett, A.B. Gazzaniga, M.R. Jefferies, R.F. Huxtable, N.J. Haiduc, S.W. Fong, Extracorporeal Membrane Oxygenation (ECMO) cardiopulmonary support in infancy. J. Extra. Corpor. Technol. 11, 26–41 (1979)Google Scholar
  11. 11.
    M. Royal, Wavelet de-noising for IMU alignment. IEEE Aerosp. Electron. Syst. 19(10), 32–39 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Madhankumar, M. Jishnu, J.K. Prithiv, S. Gowrishankar, S. Rajesh, R. Balamurugan, Design and modelling of disaster relief vehicle using Rocker Bogie mechanism. Int. J. Innov. Technol. Explor. Eng. 8(6), 1274–1276 (2019)Google Scholar
  13. 13.
    S. Jose, S.S. Weerasooriya, L. Forest, P.E.K. Wong, Servo writing a disk drive using a secondary actuator to control skew angle (2009)Google Scholar
  14. 14.
    E. Outreach, Servo Motor – Working, Advantages & Disadvantages, elprocus. pp. 1–7 (2019)Google Scholar
  15. 15.
    Mark, Brushed vs brushless RC motors. RC Roundup. pp. 1–10 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • T. Vignesh
    • 1
    Email author
  • S. Madhankumar
    • 1
  • P. Anand Raj
    • 1
  • Anirudh Varadarajan
    • 1
  • T. Arul Praveen
    • 1
  1. 1.Department of Mechatronics EngineeringSri Krishna College of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations