A New Efficient Z-H Boost Converter for DC Microgrids

  • Ch. Sajan
  • T. Praveen Kumar
  • P. Balakishan
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 626)


With the shortage of the vitality and regularly increasing of the oil value, look into on the sustainable and efficient power vitality sources, only the sunlight based exhibits and the energy units, turns out to be increasingly fundamental. Boost converters are all around used to accomplish high advance up and high effectiveness DC/DC converters and furthermore utilized as power-factor adjusted pre regulators. A Z-H boost DC-DC converter is proposed in this paper as there is no shoot-through exchanging state in this converter and the front-end diode is cleared out. The Z-H boost converter can be adjusted to DC-DC, DC-AC, AC-DC, and AC-AC power change. The simulation results confirmed the investigation and exhibited the huge capability of the Z-H boost converter.


Z-H converter Boost converter PV module Power losses MPPT 


  1. 1.
    C.M. Wang, A new single-phase ZCS-PWM boost rectifier with high power factor and low conduction losses. IEEE Trans. Ind. Electron. 53(2), 500–510 (2006)CrossRefGoogle Scholar
  2. 2.
    K.P. Louganski, J.S. Lai, Current phase lead compensation in single-phase PFC boost converters with a reduced switching frequency to line frequency ratio. IEEE Trans. Power Electron. 22(1), 113–119 (2007)CrossRefGoogle Scholar
  3. 3.
    K. Kobayashi, H. Matsuo, Y. Sekine, Novel solar-cell power supply system using a multiple-input DC–DC converter. IEEE Trans. Ind. Electron. 53(1), 281–286 (2006)CrossRefGoogle Scholar
  4. 4.
    S.K. Mazumder, R.K. Burra, K. Acharya, A ripple-mitigating and energy-efficient fuel cell power-conditioning system. IEEE Trans. Power Electron. 22(4), 1437–1452 (2007)CrossRefGoogle Scholar
  5. 5.
    K. Ramtek, Y.N., Dynamic modeling and controller design for z-source DC-DC converter. Int. J. Scientif. Eng. Technol. 2(4), 272–277, Apr 2013Google Scholar
  6. 6.
    W. Li, X. Lv, Y. Deng, J. Liu, X. He, A review of non-isolated high step-up DC/DC converters in renewable energy applications. IEEE Trans. Power Electron. (2009). 978-1-422-2812-0/09Google Scholar
  7. 7.
    R.T. Naayagi, A.J. Forsyth, R. Shuttleworth, High-power bidirectional DC-DC converter for aerospace applications. IEEE Trans. Power Electron. 27(11), 4366–4379 (2012)CrossRefGoogle Scholar
  8. 8.
    W. Li, X. He, Review of non-isolated high-step-up DC/DC converters in photovoltaic grid-connected applications. IEEE Trans. Industr. Electron. 58(4), 1239–1250 (2011)CrossRefGoogle Scholar
  9. 9.
    F. Evran, M.T. Aydemir, Isolated high step-up DC-DC converter with low voltage stress. IEEE Trans. Power Electron, (early access) (2013)Google Scholar
  10. 10.
    F. Zhang, F.Z. Peng, Z. Qian, Z-H Converter. in Proc. PESC 2008 (2008), pp. 1004–1007Google Scholar
  11. 11.
    F.Z. Peng, M. Shen, Z. Qian, Maximum boost control of the Z-Source inverter. IEEE Trans. Power Electron. 20(4), 833–838 (2005)CrossRefGoogle Scholar
  12. 12.
    N.V. Nguyen, B.X. Nguyen, H.H. Lee, An optimized discontinuous PWM method to minimize switching loss for multilevel inverters. IEEE Trans. Ind. Electron. 58(9), 3958–3966 (2011)CrossRefGoogle Scholar
  13. 13.
    Y. Tang, X. Dong, Y. He, Active buck-boost inverter. IEEE Trans. Ind. Electron. 61(9), 4691–4697 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ch. Sajan
    • 1
  • T. Praveen Kumar
    • 1
  • P. Balakishan
    • 1
  1. 1.Department of Electrical and Electronics EngineeringJyothishmathi Institute of Technology and ScienceKarimnagarIndia

Personalised recommendations