Skip to main content

Phytoremediation Potential of Oilseed Crops for Lead- and Nickel-Contaminated Soil

  • Chapter
  • First Online:
Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II

Abstract

Production of crops has been facing many environmental stresses from the past few decades, hence reducing the productivity and nutrient enrichment of crops worldwide. Climatic changes and environmental stress have led to interpret the stress on plants and the purpose of its low productivity. Today the most important type of crops are the oilseed crops. Oilseed crops are mostly grown for the oil contained in the seed. The oil content in grains like wheat is only 1–2% as compared to the oilseed crops which contain primarily 20–40% of oil. Major types of oilseed crops include sunflower, brassica, olive plant, soybean, safflower and rapeseed. Due to the environmental stress like shortage of rainfall, providing wastewater for irrigation purpose, dumping of solid waste on crop lands and excessive use of fertilizers lead to the contamination of oilseed crops by mainly lead and nickel which are the heavy metals. In order to treat the crops contaminated by heavy metals, a modern, efficient, novel and environment-friendly technology is introduced named as phytoremediation. Phytoremediation is the technique in which different plants are used in order to extract the heavy metals from their roots and aerial parts. Usually the green plants have more ability to remove the pollutants from the plant and can achieve decontamination by various mechanisms. Plants usually extract the heavy metals though phytoextraction, phytofiltration, phytovolatilization, phytodegradation and phytostabilization processes. There are some chemicals which assist the phytoremediation process. These hormones are present within the plants and are mostly present in the root’s rips and in the shoots. These organic chemicals not only assist the phytoremediation mechanism but also increase the growth and nutrient rate of oilseed crops. The heavy metals like nickel and lead affect the oilseed crops in any way such as decreasing the growth of plant and disturbing its natural processes like photosynthesis. Effective uptake of lead and nickel in oilseed plants is beneficial and acts as a good hyper-accumulator while excessive uptake harms the crops in various ways. Rotation of crops is another effective method in food crops in order to decrease the accumulation of heavy metals in crops and in food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake be Alyssum murale. New Phytol 158:219–224

    CAS  Google Scholar 

  • Ahmed H, Häder D-P (2010) Rapid ecotoxicological bioassay of nickel and cadmium using motility and photosynthetic parameters of Euglena gracilis. Environ Exp Bot 69(1):68–75

    CAS  Google Scholar 

  • Akpor OB, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Int J Phys Sci 5(12):1807–1817

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    CAS  PubMed  Google Scholar 

  • Alloway B (1990) The origins of heavy metals in soils. In: Alloway BJ (ed) Heavy metals in soils. Wiley, New York, pp 29–39

    Google Scholar 

  • Angadi SV, Entz MH (2002) Water relations of standard height and dwarf sunflower cultivars. Crop Sci 42(1):152–159

    PubMed  Google Scholar 

  • Antosiewicz DM (1992) Adaptation of plants to an environment polluted with heavy metals. Acta Soc Bot Polon 61:281–299

    CAS  Google Scholar 

  • Arunakumara KKIU, Walpola BC, Yoon M-H (2013) Current status of heavy metal contamination in Asia’s rice lands. Rev Environ Sci Biotechnol 12(4):355–377

    CAS  Google Scholar 

  • Azhar N, Ashraf MY, Hussain M, Ashraf M, Ahmed R (2009) EDTA-induced improvement in growth and water relations of sunflower (Helianthus annuus L.) plants grown in lead contaminated medium. Pak J Bot 41(6):3065–3074

    CAS  Google Scholar 

  • Bai Y, Zhang B, Cao Z (2006) The Performance of CRTNT fluorescence light detector for Sub-EeV cosmic ray observation. J Phys Conf Ser 47:255–259

    CAS  Google Scholar 

  • Baker AJM, Walker P (1989) Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity. Chem Speciat Bioavailab 1(1):7–17

    CAS  Google Scholar 

  • Baker GA, Jacoby A, Smith DF, Dewey ME, Chadwick DW (1994) Development of a novel scale to assess life fulfilment as part of the further refinement of a quality-of-life model for epilepsy. Epilepsia 35(3):591–596

    CAS  PubMed  Google Scholar 

  • Bañuelos GS, Shannon MC, Ajwa H, Draper JH, Jordahl J, Licht J (1999) Phytoextraction and accumulation of boron and selenium by poplar (Populus) Hybrid Clones. Int J Phytoremediation 1(1):81–96

    Google Scholar 

  • Batarseh MI, Rawajfeh A, Ioannis KK, Prodromos KH (2011) Treated municipal wastewater irrigation impact on olive trees (Olea Europaea L.) at Al-Tafilah, Jordan. Water Air Soil Pollut 217(1–4):185–196

    CAS  Google Scholar 

  • Baycu G, Doganay T, Hakan O, Sureyya G (2006) Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environ Pollut 143:545–554

    CAS  PubMed  Google Scholar 

  • Bazzaz FA, Rolfe GL, Carlson RW (1974) Effect of Cd on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiol Plant 32(4):373–376

    CAS  Google Scholar 

  • Bennet A, Bennet D (2011) Laying the groundwork for a KM professional. KMEF Webinars

    Google Scholar 

  • Bennett R, Kottasz R (2011) Strategic, competitive, and co-operative approaches to internationalisation in European business schools. J Mark Manag 27(11–12):1087–1116

    Google Scholar 

  • Bennette NB, Eng JF, Dismukes GC (2011) An LC–MS-based chemical and analytical method for targeted metabolite quantification in the model cyanobacterium Synechococcus sp. PCC 7002. Anal Chem 83(10):3808–3816

    CAS  PubMed  Google Scholar 

  • Besnard G, Rubio de Casas R, Christin PA et al (2009) Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann Bot 104:143–160. between cultivated and wild olive trees (Oleaeuropaea L. var. europaea and var. sylvestris) based on nuclear and chloroplast ssr markers natural resources, 2010, 1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Wallingford, p 380

    Google Scholar 

  • Brown PH, Welch RD, Cary GE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burzynski M, Buczek J (1989) Interaction between cadmium and molybdenum affecting the chlorophyll content and accumulation of some heavy metals in the second leaf of Cucumis sativus L. Acta Physiol Planta (Poland)

    Google Scholar 

  • Carrión Y, Ntinou M, Badal E (2010) Oleaeuropaea L. in the North Mediterranean basin during the Pleni-Glacial and the Early-Middle Holocene. Quat Sci Rev 20:952–968

    Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constitutes. In: Parr JF, Marsh PB, Kia JM (eds) Land treatment of hazardous wastes. Noyes Data Corp., Park Ridge, pp 50–76

    Google Scholar 

  • Chaney RL (1993) Zinc phytotoxicity. In: Zinc in soils and plants. Springer, Dordrecht, pp 135–150

    Google Scholar 

  • Chaney RL, Scott Angle J, Leigh Broadhurst C, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36(5):1429–1443

    CAS  PubMed  Google Scholar 

  • Chen C, Huang D, Liu J (2009a) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37:304

    CAS  Google Scholar 

  • Chen C, Huang D, Liu J (2009b) Functions and toxicity of nickel in plants: advances and future prospects. Clean Air Soil Water 37:304–313

    CAS  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7(1):31–40

    CAS  PubMed  Google Scholar 

  • Comba P, Kanellakopulos B, Katsichtis C, Lienke A, Pritzkow H, Rominger F (1998) Synthesis and characterisation of manganese(II) compounds with tetradentate ligands based on the bispidine backbone. J Chem Soc Dalton Trans 23:3997–4002

    Google Scholar 

  • Cui Z-W, Xu S-Y, Sun D-W (2004) Microwave–vacuum drying kinetics of carrot slices. J Food Eng 65(2):157–164

    Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. Vitro Cellular Develop Biol-Plant 29(4):207–212

    Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Remediation of contaminated soils and sludges by green plants. In: Hinchee RE, Means JL, Burns DR (eds) Bioremediation of inorganics. Battelle Press, Columbus, pp 33–54

    Google Scholar 

  • Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation 11(8):664–691

    Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26(3):776–781

    CAS  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf 106:164–172

    CAS  PubMed  Google Scholar 

  • Eick MJ, Peak JD, Brady PV, John D (1999) Pesek, kinetics of lead adsorption/desorption on goethite: residence time effect. Soil Sci 164(1):28–39

    CAS  Google Scholar 

  • Ewais EA (1997) Biologia. Plantarum 39(3):403–410

    CAS  Google Scholar 

  • Farid M, Ali S, Ishaque W, Shakoor MB, Niazi NK, Bibi I, Dawood M, Gill RA, Abbas F (2015) Exogenous application of ethylenediamminetetraacetic acid enhanced phytoremediation of cadmium by Brassica napus L. Int J Environ Sci Technol 12(12):3981–3992

    CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Saeed R, Wu L (2017a) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf 145:90–102

    CAS  PubMed  Google Scholar 

  • Farid M, Ali S, Rizwan M, Saeed R, Tauqeer HM, Sallah-Ud-Din R, Azam A, Raza N (2017b) Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress. Environ Sci Pollut Res 24(26):21050–21064

    CAS  Google Scholar 

  • Farid M, Ali S, Zubair M, Saeed R, Rizwan M, Sallah-Ud-Din R, Azam A, Ashraf R, Ashraf W (2018a) Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower; physiological and biochemical response. Environ Sci Pollut Res 25(25):25390–25400

    CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Saeed R, Nasir T, Abbasi GH, Rehmani MIA, Ata-Ul-Karim ST, Bukhari SAH, Ahmad T (2018b) Phytomanagement of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicol Environ Saf 151:255–265

    CAS  PubMed  Google Scholar 

  • Farid M, Ali S, Saeed R, Rizwan M, Bukhari SAH, Abbasi GH, Hussain A, Ali B, Zamir MSI, Ahmad I (2019) Combined application of citric acid and 5-aminolevulinic acid improved biomass, photosynthesis and gas exchange attributes of sunflower (L.) grown on chromium contaminated soil. Int J Phytoremediation 21(8):760–767

    CAS  PubMed  Google Scholar 

  • Farid M, Ali S, Rizwan M, Yasmeen T, Arif MS, Riaz M, Saqib M, Ziaur Rehman M, Ayub MA (2020a) Combined effects of citric acid and 5-aminolevulinic acid in mitigating chromium toxicity in sunflower (Helianthus annuus l.) grown in cr spiked soil. Pak J Agric Sci

    Google Scholar 

  • Farid M, Farid S, Zubair M, Rizwan M, Ishaq HK, Ali S, Ashraf U, Alhaithloul HAS, Gowayed S, Soliman MH (2020b) Efficacy of Zea mays L. for the management of marble effluent contaminated soil under citric acid amendment; morpho-physiological and biochemical response. Chemosphere 240:124930

    CAS  PubMed  Google Scholar 

  • Fassler E, Evangelou MW, Robinson BH et al (2010) Effects of heavy metal on sunflower plant growth in combination with EDDS. Chemosphere 80:901–907

    PubMed  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29(1):511–566

    CAS  Google Scholar 

  • Fritioff Å, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 63(2):220–227

    CAS  PubMed  Google Scholar 

  • Fu X, Harberd NP (2003) Auxins promotes Arabidopsis root growth by modulating gibberellins response. Nature 421(6924):740–743

    CAS  PubMed  Google Scholar 

  • Gimeno-García E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92(1):19–25

    PubMed  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393

    CAS  PubMed  Google Scholar 

  • Godbold DL, Kettner C (1991) Lead influences root growth and mineral nutrition of Picea abies seedlings. J Plant Physiol 139(1):95–99

    CAS  Google Scholar 

  • Gomez-Campo C (1980) Morphology and morpho-taxonomy of the tribe Brassiceae. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica crops and wild allies, biology and breeding. Japan Scientific Societies Press, Tokyo, pp 3–31

    Google Scholar 

  • Grawboska I (2011) Reduction in heavy metals transfer in food. Polish J Environ Stud 20:635–462

    Google Scholar 

  • Greipsson S (2011) Phytoremediation. Nat Educ Knowl 3(10):7

    Google Scholar 

  • Gupta US (2011) In: Enfield NH (ed), Brassica vegetables, what’s new about crop plants (1st edn). Science Publishers, Boca Raton, pp 378–402

    Google Scholar 

  • Hannachi Y, Shapovalov NA, Hannachi A (2010) Adsorption of nickel from aqueous solution by the use of low-cost adsorbents. Korean J Chem Eng 27(1):152–158

    Google Scholar 

  • He ZLL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    CAS  PubMed  Google Scholar 

  • Heiser CB Jr (1976) The sunflower. University of Oklahoma Press, Norman. 198 pp

    Google Scholar 

  • Heywood VH (1985) Oleaceae: olives, ashes and lilacs. In: Heywood VH (ed) Flowering plants of the world. Croom Helm, London, pp 226–227

    Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiological evidence and mechanistic basis. Pharmacol Res 55:224–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134(1):75–84

    CAS  Google Scholar 

  • Islam MF, Veitch B, Liu P (2007) Experimental research on marine podded propulsors. J Nav Archit Mar Eng 4(2):57–71

    Google Scholar 

  • Jackson DR, Watson AP (1977) Disruption of nutrient pools and transport of heavy metals in a forested watershed near a lead smelter. J Environ Qual 6:331–33S

    CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6)

    Google Scholar 

  • Joaquin TBM, Trejo C, Hernandez-Garay A et al (2007) Effects of Ethephon, salicylic acid and cidef-4 on the yield and quality of guinea grass seed. Trop Grassl 41:55–60

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soil and plants, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, LLC, Boca Raton, pp 1–403

    Google Scholar 

  • Kastori R, Petrović M, Petrović N (1992) Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. J Plant Nutr 15(11):2427–2439

    CAS  Google Scholar 

  • Kimber DS, McGregor DI (1995) The species and their origin, cultivation and world production. In: Kimber DS, McGregor DI (eds) Brassica oilseeds, production and utilization. CAB International, Wallingford, pp 1–7

    Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29(1):1–46

    CAS  Google Scholar 

  • Kindscher K (1987) Edible wild plants of the prairie. University Press of Kansas. 276 pp

    Google Scholar 

  • King JR (1938) Morphological development of the fruit of the olive. Hilgardia 11:437–458

    Google Scholar 

  • Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2007) Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ Pollut 150(2):280–287

    CAS  PubMed  Google Scholar 

  • Krämer S (2005) Operationsraum Schrift‹: Über einen Perspektivenwechsel in der Betrachtung der Schrift. Schrift. Kulturtechnik zwischen Auge, Hand und Maschine:23–57

    Google Scholar 

  • Kristal AR, Lamp JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42:1–9

    PubMed  Google Scholar 

  • Lampe JW, Peterson S (2002) Brassica, biotransformation and cancer risk; Genetic polymorphisms alter the preventive effects of cruciferous vegetables. J Nutr 132:2291–2294

    Google Scholar 

  • Lancon F (1997) Farmers’ constraints to soybean yield improvement in Indonesia. In: Napompeth B (ed) World Soybean Research Conference V: Proceedings, Kasetsart University Press, pp 559–562

    Google Scholar 

  • Lane SD, Martin ES (1977) A histochemical investigation of lead uptake in Raphanus sativus. New Phytol 79(2):281–286

    CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals—A review of biological mechanisms. J Environ Qual 31:109–120

    CAS  PubMed  Google Scholar 

  • Li Y (1998) Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J 17(24):7514–7525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sauvé Y, Li D, Lund RD, Raisman G (2003) Transplanted olfactory ensheathing cells promote regeneration of cut adult rat optic nerve axons. J Neurosci 23(21):7783–7788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lide DL (1991) Handbook of chemistry and physics, 71st edn. CRC Press, Boca Raton

    Google Scholar 

  • Lin X, Shroff NB (2005) The impact of imperfect scheduling on cross-layer rate control in wireless networks. In: INFOCOM 2005. 24th annual joint conference of the ieee computer and communications societies. Proceedings IEEE (vol. 3, pp 1804–1814). IEEE

    Google Scholar 

  • Liu KS, Orthoefer F, Thompson K (1995) The case of food-grade soybean varieties. INFORM 6(5):593–599

    Google Scholar 

  • Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Biochim Pol 48(3):687–698

    CAS  PubMed  Google Scholar 

  • Manios T, Stentiford EI, Millner PA (2003) The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng 20(1):65–74

    Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (brassica napus) and radish (raphanus sativus) grown on multicontaminated soil. Environ Pollut 132:21–27

    CAS  PubMed  Google Scholar 

  • McEldowney S, Hardman DJ, Waite S (1993) Treatment technologies. In: McEldowney S, Hardman DJ, Waite S (eds) Pollution, ecology and bio treatment. Longman Singapore Publishers Pvt. Ltd, Singapore, pp 48–58

    Google Scholar 

  • Michel C, Ouerd A, Battaglia-Brunet F, Guigues N, Grasa J-P, Bruschi M, Ignatiadis I (2006) Cr(VI) quantification using an amperometric enzyme-based sensor: Interference and physical and chemical factors controlling the biosensor response in ground waters. Biosens Bioelectron 22(2):285–290

    CAS  PubMed  Google Scholar 

  • Mishra D, Kar M (1974) Nickel in plant growth and metabolism. Bot Rev 40:395–452

    CAS  Google Scholar 

  • Morel FM, Hering JG (1993) Principles and applications of aquatic chemistry. John Wiley & Sons, New York

    Google Scholar 

  • Mourato M, Moreira I, Leitão I, Pinto F, Sales J, Martins L (2015) Effect of heavy metals in plants of the genus Brassica. Int J Mol Sci 16(8):17975–17998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mpepereki S, Makonese F, Giller KE (eds) (1996) Soyabeans in smallholder cropping systems of Zimbabwe. SoilFertNet/CIMMYT, Harare, p 87

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal contaminated soil and ground water: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Murphy DJ (1994) Designer oil crops, breeding, processing and biotechnology. VCH VerlagsgesellschaftmbH, Weinheim

    Google Scholar 

  • Mwale SS, Hamusimbi C, Mwansa K (2003) Germination, emergence and growth of sunflower (Helianthus annuus L.) in response to osmotic seed priming. Seed Sci Technol 31:199–206

    Google Scholar 

  • Nandakumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Google Scholar 

  • Oeller PW, Min-wong L, Taylor LP, Pike DA, Anthasios T (1991) Reversible inhibition of tomato antisense RNA. Science 437:5–7

    Google Scholar 

  • Orthoefer FT, Liu K (1995) Soybeans for food uses. Food Mark Technol 9:4–8

    Google Scholar 

  • Page T, Thorsteinsson G, Lehtonen M (2006) Cognitive technologies for technology learning. Stud Inform Control 15(4):367

    Google Scholar 

  • Peng J, Zhou M-F, Hu R, Shen N, Yuan S, Bi X, Andao D, Wenjun Q (2006) Precise molybdenite Re–Os and mica Ar–Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineral Deposita 41(7):661–669

    CAS  Google Scholar 

  • Peterson MJ (1978) The medical profession in mid-Victorian. University of California Press, London

    Google Scholar 

  • Ploper LD (1997) Evolution, impact and current status of soybean diseases in Argentina. In: Napompeth B (ed) World soybean research conference V: proceedings. University Press, Kasetsart, pp 239–242

    Google Scholar 

  • Qureshi N, Mascagni P, Ribi E, Takayama K (1985) Monophosphoryl lipid a obtained from lipopolysaccharides of Salmonella minnesota R595. Purification of the dimethyl derivative by high performance liquid chromatography and complete structural determination. J Biol Chem 260(9):5271–5278

    CAS  PubMed  Google Scholar 

  • Rai RS, Clifford K, Cohen H, Regan L (1995) High prospective fetal loss rate in untreated pregnancies of women with recurrent miscarriage and antiphospholipid antibodies. Hum Reprod 10(12):3301–3304

    CAS  PubMed  Google Scholar 

  • Rapoport HF (2010) Botany and morphology. In: Bar-Ranco D, Fernández-Escobar R, Rallo L (eds) Olive growing. RIRDC, Canberra, pp 33–57

    Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    CAS  Google Scholar 

  • Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from mining areas of central Europe. Environ Pollut 31:277–228

    CAS  Google Scholar 

  • Rosati A, Caporali S, Hammami SBM et al (2012) Tissue size and cell number in the olive (Oleaeuropaea) ovary determine tissue growth and partitioning in the fruit. Funct Plant Biol 39:580–587

    CAS  PubMed  Google Scholar 

  • Sagner S, Kneer R, Wanner G, Cosson J-P, Deus-Neumann B, Zenk MH (1998) Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47(3):339–347

    CAS  PubMed  Google Scholar 

  • Sallah-Ud-Din R, Farid M, Saeed R, Ali S, Rizwan M, Tauqeer HM, Bukhari SAH (2017) Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. Environ Sci Pollut Res 24(21):17669–17678

    CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13(5):468

    CAS  Google Scholar 

  • Salt DE, Kato N, Kramer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, London, pp 189–200

    Google Scholar 

  • Sas-Nowosielska A, Kucharski R, Małkowski E, Pogrzeba M, Kuperberg JM, Kryński K (2004) Phytoextraction crop disposal—an unsolved problem. Environ Pollut 128(3):373–379

    CAS  PubMed  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2008) Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol 55(1):1–22

    CAS  Google Scholar 

  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Bharwana SA, Abbasi GH (2014) Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    PubMed  Google Scholar 

  • Shalini V, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655

    Google Scholar 

  • Sharma SS, Gaur JP (1995) Potential of Lemna polyrrhiza for removal of heavy metals. Ecol Eng 4(1):37–43

    Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspicaerulescens and the non hyperaccumulator Thlaspiochroleucum. Plant Cell Environ 20:898–906

    CAS  Google Scholar 

  • Silverstone AL, Jung HS, Dill A et al (2001) Repressing a repressor: gibberellins-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555–1565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Agrawal M, Marshall FM (2010) The role of organic vs. inorganic fertilizers in reducing phytoavailability of heavy metals in a wastewater-irrigated area. Ecol Eng 36(12):1733–1740

    Google Scholar 

  • Strike SS (1994) Ethnobotany of the California Indians. In: Aboriginal uses of California’s indigenous plants (vol. 2). Kowltz Scientific Books, Hessen. 210 pp

    Google Scholar 

  • Szczygłowska M, Piekarska A, Konieczka P, Namieśnik J (2011) Use of brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12(11):7760–7771

    PubMed  PubMed Central  Google Scholar 

  • Takuwa N, Zhou W, Kumada M, Takuwa Y (1995) Involvement of intact inositol-1,4,5-trisphosphate-sensitive Ca stores in cell cycle progression at the G1/S boundary in serum-stimulated human fibroblasts. FEBS Lett 360(2):173–176

    CAS  PubMed  Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62:1454–1463

    CAS  PubMed  Google Scholar 

  • Thawornchaisit U, Polprasert C (2009) Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils. J Hazard Mater 165:1109–1113

    CAS  PubMed  Google Scholar 

  • Wang JH, Cheng Z, Brédas JL, Liu M (2007) Electronic and vibrational properties of nickel sulfides from first principles. J Chem Phys 127(21):214705

    PubMed  Google Scholar 

  • Wong KL (2003) Planar antennas for wireless communications. Microw J 46(10):144–145

    Google Scholar 

  • Wu C, William Munger J, Zheng N, Kuang D (2010) Comparison of multiple models for estimating gross primary production using MODIS and eddy covariance data in Harvard Forest. Remote Sens Environ 114(12):2925–2939

    Google Scholar 

  • Ximénez-Embún P, Rodríguez-Sanz B, Madrid-Albarrán Y, Cámara C (2002) Uptake of heavy metals by lupin plants in artificially contaminated sand: preliminary results. Int J Environ Anal Chem 82(11–12):805–813

    Google Scholar 

  • Xiong L, Zhu J-K (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133(1):29–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y-C, Li F-M, Zhang T (2006) Performance of wheat crops with different chromosome ploidy: root-sourced signals, drought tolerance, and yield performance. Planta 224(3):710–718

    CAS  PubMed  Google Scholar 

  • Yang L, Guan T, Gerace L (1997) Lamin-binding fragment of LAP2 inhibits increase in nuclear volume during the cell cycle and progression into S phase. J Cell Biol 139(5):1077–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yarnell RA (1978) Domestication of sunflower and sumpweed in Eastern North America. In: Ford RI (ed), The nature and status of ethnobotany. Anthropological paper 67, Museum of Anthropology, University of Michigan, pp 289–299

    Google Scholar 

  • Zimdahl RL (1976) Entry and movement in vegetation of lead derived from air and soil sources. J Air Pollut Control Assoc 26(7):655–660

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaqat Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashfaq, H. et al. (2020). Phytoremediation Potential of Oilseed Crops for Lead- and Nickel-Contaminated Soil. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_31

Download citation

Publish with us

Policies and ethics