Advertisement

Experimental Study on Sediment Supply-Limited Bedforms in a Coastal Context

  • Mélanie VahEmail author
  • Armelle Jarno
  • François Marin
  • Sophie Le Bot
Conference paper
  • 56 Downloads
Part of the Springer Water book series (SPWA)

Abstract

Experiments are carried out in a flume without slope. Tests are performed for different unidirectional steady flow conditions, varying the initial sediment thickness and recirculating the sediment to ensure a constant supply condition, from an extremely limited sediment supply to an unlimited sediment supply condition. The formation of ripples and dunes is considered from an initially flat bed. The growth rate of the mean wavelength of ripples depends on the sediment supply, whether it is extremely limited or not. In spite of a rapid initial growth when sediment supply is extremely limited, the growth rate is much higher when sediment availability increases. As far as the equilibrium dimensions of the sedimentary structures are concerned, an increase of mean heights of ripples and dunes is pointed out when the sediment availability increases. The similar trend is found for mean ripple lengths but no clear trend is exhibited for dunes which are few and irregular. The empirical law proposed by Tuijnder et al. (2009) in a fluvial context for relative dune heights in the case of sediment limited supply conditions can be used for dunes in a coastal context. However, this formulation cannot be extended to ripple heights for which a dependence with flow conditions is noted. Ripple equilibrium lengths can be described with a relation suggested by Tuijnder et al. (2009) for dunes if an adaptation factor is considered.

Keywords

Ripples Dunes Coastal bedforms Sediment supply limitation Sediment dynamics Physical modeling 

Nomenclature

d

water depth (m)

Dxx

grain size for which XX percent is finer

D*

dimensionless grain size

g

gravitational acceleration (m/s²)

h

height (m)

Ie

slope energy level

Re

Reynolds number

s

sediment relative density

U

mean velocity (m/s)

u*

shear stress velocity (m/s)

x

position in the flume (m)

α, αT, αT, β, βT, γT

dimensionless parameters

γp

growth exponent

δ

layer thickness (m)

θ

Shields parameter

λ

wavelength (m)

ρ

water density (kg/m3)

σg

standard deviation

ν

kinematic viscosity (m²/s)

grain related

c

threshold

eq

equilibrium

eq_inf

equilibrium value without supply-limitation

Notes

Acknowledgements

The authors express their sincere thanks to the Normandy region (SCALE Research Network) for funding this work. The help of master student C. El Hadi for the flume experiments was greatly appreciated.

References

  1. Allen, J. R. L. (1963). The classification of cross-stratified units. With notes on their origin. Sedimentology, 2(2), 93–114.CrossRefGoogle Scholar
  2. Allen, J. R. L. (1968). Sand waves: A model of origin and internal structure. Sedimentary Geology, 26(4), 281–328.CrossRefGoogle Scholar
  3. Baas, J. H. (1993). Dimensional analysis of current ripples in recent and ancient depositional environments, Faculteit Aardwetenschappen.Google Scholar
  4. Blondeaux, P. (2001). Mechanics of coastal forms. Annual Review of Fluid Mechanics, 33(1), 339–370.CrossRefGoogle Scholar
  5. Carling, P. A., Golz, E., Orr, H. G., & Radecki-Pawlik, A. (2000). The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. I. Sedimentology and morphology. Sedimentology, 47(1), 227–252.CrossRefGoogle Scholar
  6. Charru, F., Andreotti, B., & Claudin, P. (2013). Sand ripples and dunes. Annual Review of Fluid Mechanics, 45, 469–493.CrossRefGoogle Scholar
  7. Coleman, S. E., Zhang, M. H., & Clunie, T. (2005). Sediment-wave development in subcritical water flow. Journal of Hydraulic Engineering, 131(2), 106–111.CrossRefGoogle Scholar
  8. Coleman, S. E., & Nikora, V. (2011). Fluvial dunes: Initiation, characterization, flow structure. Earth Surface Processes and Landforms, 36(1), 39–57.CrossRefGoogle Scholar
  9. Colombini, M., & Stocchino, A. (2011). Ripple and dune formation in rivers. Journal of Fluid Mechanics, 673, 121–131.CrossRefGoogle Scholar
  10. Dreano, J., Valance, A., Lague, D., & Cassar, C. (2010). Experimental study on transient and steady-state dynamics of bedforms in supply limited configuration. Earth Surface Processes and Landforms, 35(14), 1730–1743.CrossRefGoogle Scholar
  11. Engelund, F., & Fredsøe, J. (1982). Sediment ripples and dunes. Annual Review of Fluid Mechanics, 14(1), 13–37.CrossRefGoogle Scholar
  12. Flemming, B. W. (1988). Zur Klassifikation subaquatischer, strömungstransversaler Transportkörper. Bochumer geologische und geotechnische Arbeiten, 29, 44–47.Google Scholar
  13. Flemming, B. W. (2000). The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes. In T. Garlan, & A. Trentesaux (Eds.), Marine Sandwave Dynamic, International Workshop (Vol. 1, pp. 55–60). Université de Lille.Google Scholar
  14. Fourrière, A., Claudin, P., & Andreotti, B. (2010). Bedforms in a turbulent stream: Formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening. Journal of Fluid Mechanics, 649, 287–328.CrossRefGoogle Scholar
  15. Fredsoe, J. (1974). On the development of dunes in erodible channels. Journal of Fluid Mechanics, 64(1), 1–16.CrossRefGoogle Scholar
  16. Kennedy, J. F. (1963). The mechanics of dunes and antidunes in erodible bed channels. Journal of Fluid Mechanics, 16, 521–544.CrossRefGoogle Scholar
  17. Kleinhans, M. G., Wilbers, A. W. E., De Swaaf, A., & Van den Berg, J. H. (2002). Sediment supply-limited bedforms in sand-gravel bed rivers. Journal of Sedimentary Research, 72(5), 629–640.CrossRefGoogle Scholar
  18. Le Bot, S., & Trentesaux, A. (2004). Types of internal structure and external morphology of submarine dunes under the influence of tide- and wind-driven processes (Dover Strait, northern France). Marine Geology, 211(1–2), 143–168.CrossRefGoogle Scholar
  19. Marin, F., & Ezersky, A. B. (2008). Formation dynamics of sand bedforms under solitons and bound states of solitons in a wave flume used in resonant mode. European Journal of Mechanics-B/Fluids, 27(3), 251–267.CrossRefGoogle Scholar
  20. Nikora, V. I., & Hicks, D. M. (1997). Scaling relationships for sand wave development in unidirectional flow. Journal of Hydraulic Engineering, 123(12), 1152–1156.CrossRefGoogle Scholar
  21. Rauen, W. B., Lin, B., & Falconer, R. A. (2009). Modelling ripple development under non-uniform flow and sediment supply-limited conditions in a laboratory flume. Estuarine, Coastal and Shelf Science, 82, 452–460.CrossRefGoogle Scholar
  22. Seminara, G. (2010). Fluvial sedimentary patterns. Annual Review of Fluid Mechanics, 42, 43–66.CrossRefGoogle Scholar
  23. Soulsby, R. (1997). Dynamics of marine sands: a manual for practical applications. Thomas Telford.Google Scholar
  24. Soulsby, R. L., Whitehouse, R. J. S., & Marten, K. V. (2012). Prediction of time-evolving sand ripples in shelf seas. Continental Shelf Research, 38, 47–62.CrossRefGoogle Scholar
  25. Stoesser, T., Braun, C., Garcia-Villalba, M., & Rodi, W. (2008). Turbulence structures in flow over two-dimensional dunes. Journal of Hydraulic Engineering, 134(1), 42–55.CrossRefGoogle Scholar
  26. Tuijnder, A. P., Ribberink, J. S., & Hulscher, S. J. (2009). An experimental study into the geometry of supply-limited dunes. Sedimentology, 56(6), 1713–1727.CrossRefGoogle Scholar
  27. van Landeghem, K. J. J., et al. (2009). Post-glacial sediment dynamics in the Irish Sea and sediment wave morphology: Data–model comparisons. Continental Shelf Research, 29, 1723–1736.CrossRefGoogle Scholar
  28. van Rijn, L. C. (1984). Sediment transport, part III: Bed forms and alluvial roughness. Journal of Hydraulic Engineering, 110(12), 1733–1754.CrossRefGoogle Scholar
  29. Yalin, M. S. (1964). Geometrical properties of sand wave. Journal of the Hydraulics Division, 90(5), 105–119.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mélanie Vah
    • 1
    Email author
  • Armelle Jarno
    • 1
  • François Marin
    • 1
  • Sophie Le Bot
    • 2
  1. 1.Normandie Univ, UNIHAVRE, UMR 6294, CNRS, LOMCLe HavreFrance
  2. 2.Normandie Univ, UNIROUEN, UNICAEN, UMR 6143, CNRS, M2CRouenFrance

Personalised recommendations