Advertisement

Investigation of Solitary Wave Over a Trench Using a Non-hydrostatic Numerical Model

  • J. X. ZhangEmail author
Conference paper
  • 56 Downloads
Part of the Springer Water book series (SPWA)

Abstract

A three-dimensional non-hydrostatic model was presented to simulate solitary wave propagation. A one equation turbulent model (Spalart-Allmaras model) was used to calculate the eddy viscosity. To simulate the bottom boundary layer flow, a high grid resolution was used within the boundary layer. The bottom shear stress was directly calculated using the turbulent model. The model was validated by means of comparing the calculated water elevation with analytical results. Taking a stable solitary wave being simulated in a long numerical flume as the initial condition, we simulated the solitary wave propagation over a trench. The wave profile skewness, the velocity distribution, the local flow separation, and the dissolved mass transportation were elaborately analysed.

Keywords

Solitary wave Boundary layer Non-hydrostatic model Trench 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation (No. 11572196) and the National Basic Research Programme (973 programme) of China (No. 2014CB046200).

References

  1. Balachandar, R., Polatel, C., Hyun, B.-S., Yu, K., Lin, C.-L., Yue, W., et al. (2002). LDV, PIV and LES investigation of flow over a fixed dune. In Proceeding of the Symposium Held in Monte Verità: Sedimentation and Sediment Transport (pp. 171–178). Dordrecht: Kluwer Academic.Google Scholar
  2. Casulli, V. (1999). A semi-implicit finite difference method for non-hydrostatic, free-surface flows. International Journal for Numerical Methods in Fluids, 30, 425–440.  https://doi.org/10.1002/(SICI)1097-0363(19990630)30:4%3c425:AID-FLD847%3e3.0.CO;2-D.CrossRefGoogle Scholar
  3. Casulli, V., & Zanolli, P. (2002). Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems. Mathematical and Computer Modeling, 36, 1131–1149.  https://doi.org/10.1016/S0895-7177(02)00264-9.CrossRefGoogle Scholar
  4. Chen, X. J. (2003). A fully hydrodynamic model for three-dimensional, free-surface flows. International Journal for Numerical Methods in Fluids, 42, 929–952.  https://doi.org/10.1002/fld.557.CrossRefGoogle Scholar
  5. Duan, L. L., Liao, C. C., Jeng, D. S., & Chen, L. (2017). 2D numerical study of wave and current-induced oscillatory non-cohesive soil liquefaction around a partially buried pipeline in a trench. Ocean Engineering, 135, 39–51.  https://doi.org/10.1016/j.oceaneng.2017.02.036.CrossRefGoogle Scholar
  6. Dutykh, D., & Dias, F. (2007). Viscous potential free-surface flows in a fluid layer of finite depth. Comptes Rendus Mathematique, 345(2), 113–118.  https://doi.org/10.1016/j.crma.2007.06.007.CrossRefGoogle Scholar
  7. Fringer, O. B., Gerritsen, M., & Street, R. L. (2006). An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Modeling, 14, 139–173.  https://doi.org/10.1016/j.ocemod.2006.03.006.CrossRefGoogle Scholar
  8. Grimshaw, R. (1970). The solitary wave in water of variable depth. Journal of Fluid Mechanics, 42(3), 639–656.  https://doi.org/10.1017/S0022112070001520.CrossRefGoogle Scholar
  9. Grimshaw, R. (1971). The solitary wave in water of variable depth. Part 2. Journal of Fluid Mechanics, 46(3), 611–622.  https://doi.org/10.1017/s00221120710007390.
  10. Jankowski, J. A. (1999). A non-hydrostatic model for free surface flows. Ph.D. Dissertation, University of Hannover, Germany.Google Scholar
  11. Jung, T. H., Suh, K. D., Lee, S. O., & Cho, Y. S. (2008). Linear wave reflection by trench with various shapes. Ocean Engineering, 35, 1226–1234.  https://doi.org/10.1016/j.oceaneng.2008.04.001.CrossRefGoogle Scholar
  12. Kocyigit, M. B., Falconer, R. A., & Lin, B. (2002). Three-dimensional numerical modeling of free surface flows with non-hydrostatic pressure. International Journal for Numerical Methods in Fluids, 40, 1145–1162.  https://doi.org/10.1002/fld.376.CrossRefGoogle Scholar
  13. Li, B., & Fleming, C. A. (2001). Three-dimensional model of Navier-Stokes equations for water waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 127(1), 16–25.  https://doi.org/10.1061/(ASCE)0733-950X(2001)127:1(16).CrossRefGoogle Scholar
  14. Liu, P. L.-F., & Orfila, A. (2004). Viscous effects on transient long-wave propagation. Journal of Fluid Mechanics, 520, 83–92.  https://doi.org/10.1017/S0022112004001086.CrossRefGoogle Scholar
  15. Liu, P. L.-F., Simarro, G., Vandever, J., & Orfila, A. (2006). Experimental and numerical investigation of viscous effects on solitary wave propagation in a wave tank. Coastal Engineering, 53, 181–190.  https://doi.org/10.1016/j.coastaleng.2005.10.008.CrossRefGoogle Scholar
  16. Ma, G. F., Shi, F. Y., & Kirby, J. T. (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43–44, 22–35.  https://doi.org/10.1016/j.ocemod.2011.12.002.CrossRefGoogle Scholar
  17. Peregrine, D. H. (1967). Long waves on a beach. Journal of Fluid Mechanics, 27(4), 815–827.  https://doi.org/10.1017/S0022112067002605.CrossRefGoogle Scholar
  18. Spalart, P. R. (2000). Strategies for turbulence modelling and simulations. International Journal of Heat Fluid Flow, 21, 252–263.  https://doi.org/10.1016/S0142-727X(00)00007-2.CrossRefGoogle Scholar
  19. Xie, J. J., & Liu, H. W. (2012). An exact analytic solution to the modified mild-slope equation for waves propagating over a trench with various shapes. Ocean Engineering, 50, 72–82.  https://doi.org/10.1016/j.oceaneng.2012.05.014.CrossRefGoogle Scholar
  20. Yue, W., Lin, C. L., & Patel, V. C. (2005). Large eddy simulation of turbulent open-channel flow with free surface simulated by level set method. Physics of Fluids, 17, 1–12.  https://doi.org/10.1063/1.1849182.CrossRefGoogle Scholar
  21. Yue, W., Lin, C. L., & Patel, V. C. (2006). Large-eddy simulation of turbulent flow over a fixed two-dimensional dune. Journal of Hydraulic Engineering, 132(7), 643–651.  https://doi.org/10.1061/(ASCE)0733-9429(2006)132:7(643).CrossRefGoogle Scholar
  22. Zhang, J. X., Sukhodolov, A. N., & Liu, H. (2014). Non-hydrostatic versus hydrostatic modelings of free surface flows. Journal of Hydrodynamics, 26(4), 840–847.  https://doi.org/10.1016/S1001-6058(14)60058-5.CrossRefGoogle Scholar
  23. Zhang, J. X., Wang, X. K., Liang, D. F., & Liu, H. (2015). Application of detached-eddy simulation to free surface flow over dunes. Engineering Applications of Computational Fluid Mechanics, 9(1), 556–566.  https://doi.org/10.1080/19942060.2015.1092269.CrossRefGoogle Scholar
  24. Zhang, J. X., Liang, D. F., & Liu, H. (2016). An efficient 3D non-hydrostatic model for simulating near-shore breaking waves. Ocean Engineering, 140, 19–28.  https://doi.org/10.1016/j.oceaneng.2017.05.009.CrossRefGoogle Scholar
  25. Zhang, J. X., Liang, D. F., & Liu, H. (2018). A hybrid hydrostatic and non-hydrostatic numerical model for shallow flow simulations. Estuarine, Coastal and Shelf Science, 205, 21–29.  https://doi.org/10.1016/j.ecss.2018.03.012.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Key Laboratory of HydrodynamicsMinistry of EducationShanghaiChina
  2. 2.School of Naval ArchitectureOcean and Civil Engineering, Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations