Skip to main content

Monitoring and Impact Assessment of Climate Change on Agriculture Using Advanced Research Techniques

  • Chapter
  • First Online:
Soil Analysis: Recent Trends and Applications

Abstract

Anthropogenic emission of greenhouse gas, destruction of vegetation, faulty agricultural practices, rampant use of fossil fuels bring a new challenge to the humanity in the form of climate change. In this chapter, we have tried to ensemble the information on modern techniques to monitor and measure the impact of climate change. The research facilities for assessing the impact of elevated CO2 and temperature exposure experiment are broadly divided into closed and semi-open to open systems. Growth cabinets and phytotrons are the examples of closed system tools, while open top chambers (OTC), free air carbon dioxide enrichment (FACE), temperature gradient tunnels (TGTs), and free air temperature enrichment (FATE) technologies are of the semi-open to open type. Climate change monitoring on real time basis is measured using eddy covariance techniques. This system measures the fluxes of carbon dioxide, methane, water vapor, and heat. Monitoring of carbon dioxide and methane provide the idea of net carbon balance of an agricultural system, while monitoring energy balance is useful to understand the energy budgeting of the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Hamdeh NH (2003) Thermal properties of soils as affected by density and water content. Biosyst Eng 86:97–102

    Article  Google Scholar 

  • Alberto RCM, Wassmann R, Hirano T, Miyata A, Kumar A, Padre A, Amante M (2009) CO2/heat fluxes in rice fields: comparative assessment of flooded and non-flooded fields in the Philippines. Agric For Meteorol 149:1737–1750

    Article  Google Scholar 

  • Allen LH, Pan D, Boote KJ, Pickering NB, Jones JW (2003) Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean. Agron J 95:1071–1081

    Article  Google Scholar 

  • Anonymous (2018). https://unstats.un.org/sdgs/report/2016/goal-15/. Accessed 04 Apr 2019

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystem: past, present and future. Glob Chang Biol 9:479–492

    Article  Google Scholar 

  • Bhattacharyya P, Neogi S, Roy KS, Dash PK, Tripathi R, Rao KS (2013) Net ecosystem CO2 exchange and carbon cycling in tropical lowland flooded rice ecosystem. Nutr Cycl Agroecosys 95:133–144

    Article  CAS  Google Scholar 

  • Bishop KA, Betzelberger AM, Long SP, Ainsworth EA (2014) Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell Environ 38:1683–1691

    Google Scholar 

  • Breuer L, Eckhardt K, Frede HG (2003) Plant parameter values for models in temperate climates. Ecol Model 169:237–293

    Article  Google Scholar 

  • Bunce JA (2014a) Limitations to soybean photosynthesis at elevated carbon dioxide in free-air enrichment and open top chamber systems. Plant Sci 226:131–135

    Article  CAS  PubMed  Google Scholar 

  • Bunce JA (2014b) CO2 enrichment at night affects the growth and yield of common beans. Crop Sci 54:1744–1747

    Article  CAS  Google Scholar 

  • Bunce JA (2016) Response of soybeans and wheat to elevated CO2 in free-air and open-top chamber systems. Field Crops Res 186:78–85

    Article  Google Scholar 

  • Chacko PT, Renuka G (2002) Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala. J Earth Syst Sci 111:79–85

    Article  Google Scholar 

  • Chatterjee D, Nayak AK, Chatterjee S, Bhattacharyya P, Kumar A, Lal B, Swain CK, Tripathi R (2017) Eddy covariance technique for micrometeorological measurements. In: Nayak AK, Sarkar RK, Chattopadhyay K, Reddy JN, Lal B, Chatterjee D (eds) Enhancing climate resilience in rice: abiotic stress tolerance and greenhouse gas mitigation. ICAR-National Rice Research Institute, Cuttack, pp 91–103

    Google Scholar 

  • Chatterjee D, Saha S (2015) Climate change and agriculture: a multidimensional perspective. In: Chatterjee D, Sangma CBK, Kikon ZJ, Ray SK, Chowdhury P, Bordoloi LJ, Deka BC (eds) Resource conservation technologies in the context of climate change. ICAR Research Complex for NEH Region, Medziphema, pp 1–8

    Google Scholar 

  • Chatterjee D, Saha S (2018) Response of soil properties and soil microbial communities to the projected climate change. In: Advances in crop environment interaction. Springer, Singapore, pp 87–136

    Chapter  Google Scholar 

  • Chatterjee D, Tripathi R, Chatterjee S, Debnath M, Shahid M, Bhattacharyya P, Swain CK, Tripathy R, Bhattacharya BK, Nayak AK (2019a) Characterization of land surface energy fluxes in a tropical lowland rice paddy. Theor Appl Climatol 136(1–2):157–168. https://doi.org/10.1007/s00704-018-2472-y

    Article  Google Scholar 

  • Chatterjee D, Nayak AK, Vijayakumar S, Debnath M, Chatterjee S, Swain CK, Bihari P, Mohanty S, Tripathi R, Shahid M, Kumar A (2019b) Water vapor flux in tropical lowland rice. Environ Monit Assess 191(9):550

    Article  PubMed  CAS  Google Scholar 

  • Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J Geophys Res Oceans 86(C8):7203–7209

    Article  CAS  Google Scholar 

  • De Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol 12:2077–2091. https://doi.org/10.1111/j.1365-2486.2006.01240.x

    Article  Google Scholar 

  • Dickinson RE (1983) Land surface processes and climate—surface albedos and energy balance. Adv Geophys 25:305–353

    Article  Google Scholar 

  • Evett SR, Schwartz RC, Casanova JJ, Heng LK (2012) Soil water sensing for water balance, ET and WUE. Agric Water Manag 104:1–9

    Article  Google Scholar 

  • Fuchs M, Tanner CB (1970) Error analysis of Bowen ratios measured by differential psychrometry. Agric Meteorol 7:329–334

    Article  Google Scholar 

  • Gascoin S, Ducharne A, Ribstein P, Perroy E, Wagnon P (2009) Sensitivity of bare soil albedo to surface soil moisture on the moraine of the Zongo glacier (Bolivia). Geophys Res Lett 36:L02405

    Article  Google Scholar 

  • Gautam P, Lal B, Nayak AK, Raja R, Panda BB, Tripathi R, Shahid M, Kumar U, Baig MJ, Chatterjee D, Swain CK (2019) Inter-relationship between intercepted radiation and rice yield influenced by transplanting time, method, and variety. Int J Biometeorol 63(3):337–349. https://doi.org/10.1007/s00484-018-01667-w

    Article  PubMed  Google Scholar 

  • Ge HX, Zhang HS, Zhang H, Cai XH, Song Y, Kang L (2018) The characteristics of methane flux from an irrigated rice farm in East China measured using the eddy covariance method. Agric For Meteorol 249:228–238

    Article  Google Scholar 

  • Ghuman BS, Lal R (1985) Thermal conductivity, thermal diffusivity, and thermal capacity of some Nigerian soils. Soil Sci 139:74–80

    Article  Google Scholar 

  • Godfree R, Robertson B, Bolger T, Carnegie M, Young A (2011) An improved hexagon open-top chamber system for stable diurnal and nocturnal warming and atmospheric carbon dioxide enrichment. Glob Chang Biol 17:439–451

    Article  Google Scholar 

  • Goosse H, Barriat PY, Lefebvre W Loutre MF, Zunz V (2010) Introduction to climate dynamics and climate modeling. Online textbook. http://www.climate.be/textbook

  • Grant IF, Prata AJ, Cechet RP (2000) The impact of the diurnal variation of albedo on the remote sensing of the daily mean albedo of grassland. J Appl Meteorol 39(2):231–244

    Article  Google Scholar 

  • Hatton TJ, Vertessy RA (1990) Transpiration of plantation Pinus radiata estimated by the heat pulse method and the Bowen ratio. Hydrol Process 4:289–298

    Article  Google Scholar 

  • Hendrey GR, Kimball B (1990) Free-air carbon dioxide enrichment. Application to field-grown cotton. DOE FACE project brochure, national technical information service. U.S. Department of Commerce, Springfield

    Google Scholar 

  • Hillel D (1998) Environmental soil physics: fundamentals, applications, and environmental considerations. Academic, Cambridge

    Google Scholar 

  • Hiller RV, McFadden JP, Kljun N (2011) Interpreting CO2 fluxes over a suburban lawn: the influence of traffic emissions. Bound-Layer Meteorol 138:215–230

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Summary for policy makers. In: Stocker TF, Qin D, Plattner G-K, MMB T, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–27

    Google Scholar 

  • Jones AG, Scullion J, Ostle N, Levy PE, Gwynn-Jones D (2014) Completing the FACE of elevated CO2 research. Environ Int 73:252–258

    Article  CAS  PubMed  Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kimball BA, Conley MM, Wang S, Lin X, Luo C, Morgan J, Smith D (2008) Infrared heater arrays for warming ecosystem field plots. Glob Chang Biol 14:309–320

    Article  Google Scholar 

  • Li J, Liu Y, Yang X, Li J (2006) Studies on water-vapor flux characteristic and the relationship with environmental factors over a planted coniferous forest in Qianyanzhou Station. Acta Ecol Sin 26(8):2449–2456

    Article  Google Scholar 

  • Masseroni D, Facchi A, Romani M, Chiaradia EA, Gharsallah O, Gandolfi C (2015) Surface energy flux measurements in a flooded and an aerobic rice field using a single eddy-covariance system. Paddy Water Environ 13:405–424. https://doi.org/10.1007/s10333-014-0460-0

    Article  Google Scholar 

  • Masseroni D, Ravazzani G, Corbari C, Mancini M (2012) Turbulence integral length and footprint dimension with reference to experimental data measured over maize cultivation in Po Valley, Italy. Atmósfera 25:183–198

    Google Scholar 

  • Miyata A, Leuning R, Denmead OT et al (2000) Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agric For Meteorol 102(4):287–303

    Article  Google Scholar 

  • Müller J, Eschenröder A, Muller WD (2009) Through-flow chamber CO2/H2O canopy gas exchange system—construction, microclimate, errors, and measurements in a barley (Hordeum vulgare L.) field. Agric For Meteorol 149(2):214–229

    Article  Google Scholar 

  • Neue HU (1993) Methane emission from rice fields. Bioscience 43:466–475

    Article  Google Scholar 

  • Nordbo A, Launiainen S, Mammarella I, Leppäranta M, Huotari J, Ojala A, Vesala T (2011) Long term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J Geophys Res 116:D02119. https://doi.org/10.1029/2010JD014542

    Article  Google Scholar 

  • Pakoktom T, Aoki M, Kasemsap P, Boonyawat S, Attarod P (2009) CO2 and H2O fluxes ratio in paddy fields of Thailand and Japan. Hydrol Res Lett 3:10–13

    Article  Google Scholar 

  • Pal M, Karthikeyapandian V, Jain V, Srivastava AC, Raj A, Sengupta UK (2004) Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2. Agric Ecosyst Environ 101:31–38

    Article  Google Scholar 

  • Pal M, Rao LS, Srivastava AC, Jain V, Sengupta UK (2003) Impact of CO2 enrichment and variable nitrogen supplies on composition and partitioning of essential nutrients of wheat. Biol Plant 47:227–231

    Article  CAS  Google Scholar 

  • Pérez-Priego O, Testi L, Orgaz F, Villalobos FJ (2010) A large closed canopy chamber for measuring CO2 and water vapour exchange of whole trees. Environ Exp Bot 68:131–138

    Article  CAS  Google Scholar 

  • Phene CJ, Baker DN, Lambert JR, Parsons JE, McKinion JN (1978) SPAR – a soil-plant-atmosphere research system. Trans ASAE 21(5):924–938

    Article  Google Scholar 

  • Prasad KVV, Boote KJ, Allen LH Jr, Tomas JMG (2003) Supra-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Glob Chang Biol 9:1775–1787

    Article  Google Scholar 

  • Rodeghiero M, Niinemets U, Cescatti A (2007) Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters? Plant Cell Environ 30(8):1006–1022

    Article  CAS  PubMed  Google Scholar 

  • Rogers HH, Heck WW, Heagle AS (1983) A field technique for the study of plant responses to elevated carbon dioxide concentration. J Air Pollut Control Assoc 33:42–44

    Article  CAS  Google Scholar 

  • Saha S, Chakraborty D, Lata PM, Nagarajan S (2011) Impact of elevated CO2 on utilization of soil moisture and associated soil biophysical parameters in pigeon pea (Cajanus cajan L.). Agric Ecosyst Environ 142(3–4):213–221

    Article  Google Scholar 

  • Saha S, Chakraborty D, Sehgal VK, Nain L, Pal M (2016) Long-term atmospheric CO2 enrichment impact on soil biophysical properties and root nodule biophysics in chickpea (Cicer arietinum L.). Eur J Agron 75:1–11. https://doi.org/10.1016/j.eja.2015.12.005

    Article  CAS  Google Scholar 

  • Saha S, Chakraborty D, Sehgal VK, Pal M (2015a) Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.). Food Chem 187:431–436. https://doi.org/10.1016/j.foodchem.2015.04.116

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Chakraborty D, Sehgal VK, Pal M (2015b) Rising atmospheric CO2: potential impacts on chickpea seed quality. Agric Ecosyst Environ 203:140–146

    Article  CAS  Google Scholar 

  • Saha S, Sehgal VK, Chakraborty D, Pal M (2015c) Atmospheric carbon dioxide enrichment induced modifications in canopy radiation utilization, growth and yield of chickpea (Cicer arietinum L.). Agric For Meteorol 202:102–111

    Article  Google Scholar 

  • Saha S, Sehgal VK, Nagarajan S, Pal M (2012) Impact of elevated atmospheric CO2 on radiation utilization and related plant biophysical properties in pigeon pea (Cajanus cajan L.). Agric For Meteorol 158:63–70

    Article  Google Scholar 

  • Satpathy SN, Rath AK, Ramakrishnan B et al (1997) Diurnal variation in methane efflux at different growth stages of tropical rice. Plant Soil 195(2):267–271

    Article  CAS  Google Scholar 

  • Schubert CJ, Diem T, Eugster W (2012) Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels, and boundary model calculations: a comparison. Environ Sci Technol 46(8):4515–4522

    Article  CAS  PubMed  Google Scholar 

  • Simmonds I, Bi D, Hope P (1999) Atmospheric water vapor flux and its association with rainfall over China in summer. J Clim 12:1353–1367. https://doi.org/10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2

    Article  Google Scholar 

  • Sinclair TC (1975) Photosynthate and nitrogen requirements for seed production by various crops. Science 189:565–567

    Article  CAS  PubMed  Google Scholar 

  • Srinivasa Rao M, Vanaja M, Srinivas I, Nageshwara Rao CVK, Srinivas K, Maheswari M, Prabhakar M, Sreelakshmi P, Bhaskar S, Sammi Reddy K (2018) CTGC: a facility to study the interactive effects of CO2 and temperature. Bulletin no.01/2018. ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, 44 p

    Google Scholar 

  • Swain CK, Bhattacharyya P, Nayak AK, Singh NR, Chatterjee D, Dash PK, Neogi S, Pathak H (2018a) Temporal variation of energy fluxes during dry season in tropical lowland rice. Mapan 33(3):241–251. https://doi.org/10.1007/s12647-018-0260-x

    Article  Google Scholar 

  • Swain CK, Nayak AK, Bhattacharyya P, Chatterjee D, Chatterjee S, Tripathi R, Singh NR, Dhal B (2018b) Greenhouse gas emissions and energy exchange in wet and dry season rice: eddy covariance-based approach. Environ Monit Assess 190:423. https://doi.org/10.1007/s10661-018-6805-1

    Article  CAS  PubMed  Google Scholar 

  • Swain CK, Bhattacharyya P, Nayak AK, Singh NR, Neogi S, Chatterjee D, Pathak H (2018c) Dynamics of net ecosystem methane exchanges on temporal scale in tropical lowland rice. Atmos Environ 191:291–301

    Article  CAS  Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Change Biol 14:565–575

    Article  Google Scholar 

  • Tripathi R, Debnath M, Chatterjee S, Chatterjee D, Kumar A, Bhaduri D, Poonam A, Nayak PK, Shahid M, Satapathy BS, Panda BB, Nayak AK (2018) Assessing energy and water footprints for increasing water productivity in rice-based systems assessing energy and water footprints for increasing water productivity in rice based systems. In: Pathak H, Nayak AK, Jena M, Singh ON, Samal P, Sharma SG (eds) Rice research for enhancing productivity, profitability and climate resilience. ICAR-National Rice Research Institute, Cuttack, pp 242–257

    Google Scholar 

  • Uprety DC, Garg SC, Bisht BS, Maini HK, Dwivedi N, Paswan G, Raj A, Saxena DC (2006) Carbon dioxide enrichment technologies for crop response studies. J Sci Ind Res 65(11):859–866

    CAS  Google Scholar 

  • Uprety DC, Mahalaxmi V (2000) Effect of elevated CO2 and nitrogen nutrition on photosynthesis, growth and carbon–nitrogen balance in Brassica juncea. J Agron Crop Sci 184:271–276

    Article  CAS  Google Scholar 

  • Vanaja M, Jyothi M, Ratnakumar P, Vaghera P, Raghuram Reddy P, Jyothi N, Yadav SKL, Maheswari M, Venkateswarlu B (2008) Growth and yield responses of castor bean (Ricinus communis L.) to two enhanced CO2 levels. Plant Soil Environ 54:38–46

    Article  CAS  Google Scholar 

  • Wang J, Wang C, Chen N, Xiong Z, Wolfe D (2015) Response of rice production to elevated [CO2] and its interaction with rising temperature or nitrogen supply: a meta-analysis. Clim Change 130(4):529–543

    Article  CAS  Google Scholar 

  • Wang L, Feng Z (2013) Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): a meta-analytic test of current hypotheses. Agric Ecosyst Environ 178:57–63

    Article  CAS  Google Scholar 

  • Wang X, Nakatsubo T, Nakane K (2012) Impacts of elevated CO2 and temperature on soil respiration in warm temperate evergreen Quercus glauca stands: an open-top chamber experiment. Ecol Res 27:595–602

    Article  Google Scholar 

  • Wassmann R, Neue HU, Alberto MCR et al (1996) Fluxes and pools of methane in wetland rice soils with varying organic inputs. Environ Monit Assess 42(1):163–173

    Article  CAS  PubMed  Google Scholar 

  • Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243. https://doi.org/10.1016/S0168-1923(02)00109-0

    Article  Google Scholar 

  • WMO (2014). http://www.wmo.int/pages/mediacentre/press_releases/pr_991_en.html

  • Wohlfahrt G, Widmoser P (2013) Can an energy balance model provide additional constraints on how to close the energy imbalance? Agric For Meteorol 169:85–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Lin X, Amen J et al (2014) Impact of changes in barometric pressure on landfill methane emission. Glob Biogeochem Cycles 28(7):679–695

    Article  CAS  Google Scholar 

  • Zheng ZY, Wei ZG, Li ZC, Wei H, Liu H (2014) Study of parameterization of surface albedo of bare soil over the Gobi Desert in the Dunhuang region [in Chinese with English abstract]. Chin J Atmos Sci 38(2):297–308. https://doi.org/10.3878/j.issn.1006-9895.2013.13147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, D. et al. (2020). Monitoring and Impact Assessment of Climate Change on Agriculture Using Advanced Research Techniques. In: Rakshit, A., Ghosh, S., Chakraborty, S., Philip, V., Datta, A. (eds) Soil Analysis: Recent Trends and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-2039-6_3

Download citation

Publish with us

Policies and ethics