Advertisement

Meta-Analysis Reveals no Significant Association of EPHX1 Tyr113His and His139Arg Polymorphisms with the Colorectal Cancer Risk

  • L. V. K. S. Bhaskar
  • Akriti Gupta
  • Smaranika Pattnaik
Chapter
  • 29 Downloads
Part of the Diagnostics and Therapeutic Advances in GI Malignancies book series (DTAGIM)

Abstract

The Tyr113His and His139Arg polymorphisms in microsomal epoxide gene (EPHX1) have been reported to be associated with colorectal cancer (CRC) risk, but the results are inconclusive. Considering the functional importance of these polymorphisms and heterogeneity in genetic association studies, we performed a meta-analysis to investigate the association between the EPHX1 Tyr113His and His139Arg polymorphisms and CRC susceptibility. A comprehensive literature search of PubMed, Embase, and Google Scholar databases were conducted before May 10, 2019. Twenty eligible studies were finally included in this meta-analysis. The pooled odds ratio (OR) with 95% confidence intervals (CIs) were calculated. In the overall analysis, both Tyr113His and His139Arg polymorphisms were not associated with CRC in allelic and dominant genetic models. On subgroup analysis, no significant associations were observed in Asians and Caucasians in any of the genetic models for these polymorphisms. Our results were confirmed by sensitivity analysis and no publication bias was found. Taken together, our data indicate that EPHX1 Tyr113His and His139Arg polymorphisms are not associated with the susceptibility to colorectal cancer. Further well-designed studies with large sample size are warranted to establish the role of EPHX1 polymorphisms in CRC, especially for Tyr113His and His139Arg.

Keywords

Colorectal cancer Meta-analysis Microsomal epoxide hydrolase EPHX1 Polymorphism Susceptibility 

Abbreviations

Arg

Arginine

CI

Confidence intervals

CRC

Colorectal cancer

FEM

Fixed effects model

HCAs

heterocyclic amines

His

Histidin

HPFS

Health Professionals Follow-up Study

HWE

Hardy-Weinberg equilibrium

mEH

microsomal epoxide gene

NHS

Nurses’ Health Study

OR

Odds ratio

PAHs

polycyclic aromatic hydrocarbons

PC

Pancreatic cancer

PLCO trial

Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial

REM

Random effects model

SNPs

Single nucleotide polymorphisms

Tyr

Tyrosine

Notes

Conflict of Interest

There are no conflicts of interests.

References

  1. Adeyeye SAO (2018) Heterocyclic amines and polycyclic aromatic hydrocarbons in cooked meat products: a review. Polycycl Aromat Compd:1–11Google Scholar
  2. Bernstein AM, Song M, Zhang X, Pan A, Wang M, Fuchs CS, Le N, Chan AT, Willett WC, Ogino S, Giovannucci EL, Wu K (2015) Processed and unprocessed red meat and risk of colorectal Cancer: analysis by tumor location and modification by time. PLoS One 10:e0135959PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bhaskar LV, Thangaraj K, Patel M, Shah AM, Gopal K, Saikrishna L, Tamang R, Singh L, Rao VR (2013) EPHX1 gene polymorphisms in alcohol dependence and their distribution among the Indian populations. Am J Drug Alcohol Abuse 39:16–22PubMedCrossRefGoogle Scholar
  4. Burnett-Hartman AN, Newcomb PA, Mandelson MT, Adams SV, Wernli KJ, Shadman M, Wurscher MA, Makar KW (2011) Colorectal polyp type and the association with charred meat consumption, smoking, and microsomal epoxide hydrolase polymorphisms. Nutr Cancer 63:583–592PubMedPubMedCentralCrossRefGoogle Scholar
  5. Center MM, Jemal A, Smith RA, Ward E (2009) Worldwide variations in colorectal cancer. CA Cancer J Clin 59:366–378PubMedCrossRefGoogle Scholar
  6. Chan AT, Giovannucci EL (2010) Primary prevention of colorectal cancer. Gastroenterology 138:2029–2043. e2010PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cleary SP, Cotterchio M, Shi E, Gallinger S, Harper P (2010) Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk. Am J Epidemiol 172:1000–1014PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey AB, Harper PA (2008) Red meat intake, doneness, polymorphisms in genes that encode carcinogen-metabolizing enzymes, and colorectal cancer risk. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology 17:3098–3107Google Scholar
  9. Demeyer D, Mertens B, De Smet S, Ulens M (2016) Mechanisms linking colorectal Cancer to the consumption of (processed) red meat: a review. Crit Rev Food Sci Nutr 56:2747–2766PubMedCrossRefGoogle Scholar
  10. Domingo JL, Nadal M (2017) Carcinogenicity of consumption of red meat and processed meat: a review of scientific news since the IARC decision. Food Chem Toxicol 105:256–261PubMedCrossRefPubMedCentralGoogle Scholar
  11. Fernandes GM, Russo A, Proenca MA, Gazola NF, Rodrigues GH, Biselli-Chicote PM, Silva AE, Netinho JG, Pavarino EC, Goloni-Bertollo EM (2016) CYP1A1, CYP2E1 and EPHX1 polymorphisms in sporadic colorectal neoplasms. World J Gastroenterol 22:9974–9983PubMedPubMedCentralCrossRefGoogle Scholar
  12. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, Dandona L, Fleming T, Forouzanfar MH, Hancock J, Hay RJ, Hunter-Merrill R, Huynh C, Hosgood HD, Johnson CO, Jonas JB, Khubchandani J, Kumar GA, Kutz M, Lan Q, Larson HJ, Liang X, Lim SS, Lopez AD, MacIntyre MF, Marczak L, Marquez N, Mokdad AH, Pinho C, Pourmalek F, Salomon JA, Sanabria JR, Sandar L, Sartorius B, Schwartz SM, Shackelford KA, Shibuya K, Stanaway J, Steiner C, Sun J, Takahashi K, Vollset SE, Vos T, Wagner JA, Wang H, Westerman R, Zeeb H, Zoeckler L, Abd-Allah F, Ahmed MB, Alabed S, Alam NK, Aldhahri SF, Alem G, Alemayohu MA, Ali R, Al-Raddadi R, Amare A, Amoako Y, Artaman A, Asayesh H, Atnafu N, Awasthi A, Saleem HB, Barac A, Bedi N, Bensenor I, Berhane A, Bernabe E, Betsu B, Binagwaho A, Boneya D, Campos-Nonato I, Castaneda-Orjuela C, Catala-Lopez F, Chiang P, Chibueze C, Chitheer A, Choi JY, Cowie B, Damtew S, das Neves J, Dey S, Dharmaratne S, Dhillon P, Ding E, Driscoll T, Ekwueme D, Endries AY, Farvid M, Farzadfar F, Fernandes J, Fischer F, TT GH, Gebru A, Gopalani S, Hailu A, Horino M, Horita N, Husseini A, Huybrechts I, Inoue M, Islami F, Jakovljevic M, James S, Javanbakht M, Jee SH, Kasaeian A, Kedir MS, Khader YS, Khang YH, Kim D, Leigh J, Linn S, Lunevicius R, El Razek HMA, Malekzadeh R, Malta DC, Marcenes W, Markos D, Melaku YA, Meles KG, Mendoza W, Mengiste DT, Meretoja TJ, Miller TR, Mohammad KA, Mohammadi A, Mohammed S, Moradi-Lakeh M, Nagel G, Nand D, Le Nguyen Q, Nolte S, Ogbo FA, Oladimeji KE, Oren E, Pa M, Park EK, Pereira DM, Plass D, Qorbani M, Radfar A, Rafay A, Rahman M, Rana SM, Soreide K, Satpathy M, Sawhney M, Sepanlou SG, Shaikh MA, She J, Shiue I, Shore HR, Shrime MG, So S, Soneji S, Stathopoulou V, Stroumpoulis K, Sufiyan MB, Sykes BL, Tabares-Seisdedos R, Tadese F, Tedla BA, Tessema GA, Thakur JS, Tran BX, Ukwaja KN, Uzochukwu BSC, Vlassov VV, Weiderpass E, Wubshet Terefe M, Yebyo HG, Yimam HH, Yonemoto N, Younis MZ, Yu C, Zaidi Z, Zaki MES, Zenebe ZM, Murray CJL, Naghavi M (2017) Global, regional, and National Cancer Incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 Cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 3:524–548PubMedCrossRefGoogle Scholar
  13. Harrison DJ, Hubbard AL, MacMillan J, Wyllie AH, Smith CA (1999) Microsomal epoxide hydrolase gene polymorphism and susceptibility to colon cancer. Br J Cancer 79:168–171PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hartsfield JK Jr, Sutcliffe MJ, Everett ET, Hassett C, Omiecinski CJ, Saari JA (1998) Assignment1 of microsomal epoxide hydrolase (EPHX1) to human chromosome 1q42.1 by in situ hybridization. Cytogenet Cell Genet 83:44–45PubMedCrossRefGoogle Scholar
  15. Hassett C, Aicher L, Sidhu JS, Omiecinski CJ (1994) Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet 3:421–428PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hlavata I, Vrana D, Smerhovsky Z, Pardini B, Naccarati A, Vodicka P, Novotny J, Mohelnikova-Duchonova B, Soucek P (2010) Association between exposure-relevant polymorphisms in CYP1B1, EPHX1, NQO1, GSTM1, GSTP1 and GSTT1 and risk of colorectal cancer in a Czech population. Oncol Rep 24:1347–1353PubMedGoogle Scholar
  17. Huang WY, Chatterjee N, Chanock S, Dean M, Yeager M, Schoen RE, Hou LF, Berndt SI, Yadavalli S, Johnson CC, Hayes RB (2005) Microsomal epoxide hydrolase polymorphisms and risk for advanced colorectal adenoma. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology 14:152–157Google Scholar
  18. Ikeda S, Sasazuki S, Natsukawa S, Shaura K, Koizumi Y, Kasuga Y, Ohnami S, Sakamoto H, Yoshida T, Iwasaki M, Tsugane S (2008) Screening of 214 single nucleotide polymorphisms in 44 candidate cancer susceptibility genes: a case-control study on gastric and colorectal cancers in the Japanese population. Am J Gastroenterol 103:1476–1487PubMedCrossRefPubMedCentralGoogle Scholar
  19. Joshi AD, Kim A, Lewinger JP, Ulrich CM, Potter JD, Cotterchio M, Le Marchand L, Stern MC (2015) Meat intake, cooking methods, dietary carcinogens, and colorectal cancer risk: findings from the colorectal Cancer family registry. Cancer Med 4:936–952PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kiss I, Orsos Z, Gombos K, Bogner B, Csejtei A, Tibold A, Varga Z, Pazsit E, Magda I, Zolyomi A, Ember I (2007) Association between allelic polymorphisms of metabolizing enzymes (CYP 1A1, CYP 1A2, CYP 2E1, mEH) and occurrence of colorectal cancer in Hungary. Anticancer Res 27:2931–2937PubMedGoogle Scholar
  21. Kury S, Buecher B, Robiou-du-Pont S, Scoul C, Colman H, Le Neel T, Le Houerou C, Faroux R, Ollivry J, Lafraise B, Chupin LD, Sebille V, Bezieau S (2008) Low-penetrance alleles predisposing to sporadic colorectal cancers: a French case-controlled genetic association study. BMC Cancer 8:326PubMedPubMedCentralCrossRefGoogle Scholar
  22. Lakkakula S, Maram R, Munirajan AK, Pathapati RM, Visweswara SB, Lakkakula BVKS (2013) EPHX1 gene polymorphisms among south Indian populations. Mol Cell Toxicol 9:219–225CrossRefGoogle Scholar
  23. Landi S, Gemignani F, Moreno V, Gioia-Patricola L, Chabrier A, Guino E, Navarro M, de Oca J, Capella G, Canzian F (2005) A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer. Pharmacogenet Genomics 15:535–546PubMedCrossRefGoogle Scholar
  24. Lee J, Shin A, Oh JH, Kim J (2017) Colors of vegetables and fruits and the risks of colorectal cancer. World J Gastroenterol 23:2527–2538PubMedPubMedCentralCrossRefGoogle Scholar
  25. Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME, Carmona-Saez P (2017) MetaGenyo: a web tool for meta-analysis of genetic association studies. BMC Bioinformatics 18:563PubMedPubMedCentralCrossRefGoogle Scholar
  26. Mitrou PN, Watson MA, Loktionov AS, Cardwell C, Gunter MJ, Atkin WS, Macklin CP, Cecil T, Bishop DT, Primrose J, Bingham SA (2007) Role of NQO1C609T and EPHX1 gene polymorphisms in the association of smoking and alcohol with sporadic distal colorectal adenomas: results from the UKFSS study. Carcinogenesis 28:875–882PubMedCrossRefPubMedCentralGoogle Scholar
  27. Nisa H, Budhathoki S, Morita M, Toyomura K, Nagano J, Ohnaka K, Kono S, Ueki T, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Maekawa T, Yasunami Y, Takenaka K, Ichimiya H, Terasaka R (2013) Microsomal epoxide hydrolase polymorphisms, cigarette smoking, and risk of colorectal cancer: the Fukuoka colorectal cancer study. Mol Carcinog 52:619–626PubMedCrossRefGoogle Scholar
  28. Northwood EL, Elliott F, Forman D, Barrett JH, Wilkie MJ, Carey FA, Steele RJ, Wolf R, Bishop T, Smith G (2010) Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk. Pharmacogenet Genomics 20:315–326PubMedCrossRefGoogle Scholar
  29. Oesch F, Hengstler JG, Arand M (2004) Detoxication strategy of epoxide hydrolase-the basis for a novel threshold for definable genotoxic carcinogens. Nonlinearity Biol Toxicol Med 2:21–26PubMedPubMedCentralCrossRefGoogle Scholar
  30. Okat Z (2018) The connection between microsomal epoxide hydrolase enzyme and cancer risk. Int Phys Med Rehab J 3:402–404Google Scholar
  31. Pande M, Amos CI, Osterwisch DR, Chen J, Lynch PM, Broaddus R, Frazier ML (2008) Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1, and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology 17:2393–2401Google Scholar
  32. Raimondi S, Botteri E, Iodice S, Lowenfels AB, Maisonneuve P (2009) Gene-smoking interaction on colorectal adenoma and cancer risk: review and meta-analysis. Mutat Res 670:6–14PubMedCrossRefPubMedCentralGoogle Scholar
  33. Sachse C, Smith G, Wilkie MJ, Barrett JH, Waxman R, Sullivan F, Forman D, Bishop DT, Wolf CR (2002) A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer. Carcinogenesis 23:1839–1849PubMedCrossRefPubMedCentralGoogle Scholar
  34. Sahin O, Arikan S, Oltulu YM, Coskunpinar E, Eren A, Cacina C, Guler E, Yaylim I (2012) Investigation of a possible relationship between EPHX1 gene polymorphisms and colorectal cancer in Turkish society. Genet Test Mol Biomarkers 16:423–428PubMedCrossRefPubMedCentralGoogle Scholar
  35. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34CrossRefGoogle Scholar
  36. Skjelbred CF, Saebo M, Hjartaker A, Grotmol T, Hansteen IL, Tveit KM, Hoff G, Kure EH (2007) Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas. BMC Cancer 7:228PubMedPubMedCentralCrossRefGoogle Scholar
  37. Song Y, Liu M, Yang FG, Cui LH, Lu XY, Chen C (2015) Dietary fibre and the risk of colorectal cancer: a case- control study. Asian Pac J Cancer Prev: APJCP 16:3747–3752PubMedCrossRefPubMedCentralGoogle Scholar
  38. Tranah GJ, Giovannucci E, Ma J, Fuchs C, Hankinson SE, Hunter DJ (2004) Epoxide hydrolase polymorphisms, cigarette smoking and risk of colorectal adenoma in the Nurses’ health study and the health professionals follow-up study. Carcinogenesis 25:1211–1218PubMedCrossRefPubMedCentralGoogle Scholar
  39. Tranah GJ, Chan AT, Giovannucci E, Ma J, Fuchs C, Hunter DJ (2005) Epoxide hydrolase and CYP2C9 polymorphisms, cigarette smoking, and risk of colorectal carcinoma in the Nurses’ health study and the Physicians’ health study. Mol Carcinog 44:21–30PubMedCrossRefPubMedCentralGoogle Scholar
  40. Turesky RJ (2004) The role of genetic polymorphisms in metabolism of carcinogenic heterocyclic aromatic amines. Curr Drug Metab 5:169–180PubMedCrossRefGoogle Scholar
  41. van der Logt EM, Bergevoet SM, Roelofs HM, Te Morsche RH, Dijk Y, Wobbes T, Nagengast FM, Peters WH (2006) Role of epoxide hydrolase, NAD(P)H:quinone oxidoreductase, cytochrome P450 2E1 or alcohol dehydrogenase genotypes in susceptibility to colorectal cancer. Mutat Res 593:39–49PubMedCrossRefGoogle Scholar
  42. Wang J, Joshi AD, Corral R, Siegmund KD, Marchand LL, Martinez ME, Haile RW, Ahnen DJ, Sandler RS, Lance P, Stern MC (2012) Carcinogen metabolism genes, red meat and poultry intake, and colorectal cancer risk. Int J Cancer 130:1898–1907PubMedCrossRefGoogle Scholar
  43. Xu X, Yu E, Gao X, Song N, Liu L, Wei X, Zhang W, Fu C (2013) Red and processed meat intake and risk of colorectal adenomas: a meta-analysis of observational studies. Int J Cancer 132:437–448PubMedCrossRefGoogle Scholar
  44. Zhang X, Lin S, Funk WE, Hou L (2013) Environmental and occupational exposure to chemicals and telomere length in human studies. Occup Environ Med 70:743–749PubMedCrossRefPubMedCentralGoogle Scholar
  45. Zhao Z, Feng Q, Yin Z, Shuang J, Bai B, Yu P, Guo M, Zhao Q (2017a) Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. Oncotarget 8:83306–83314PubMedPubMedCentralGoogle Scholar
  46. Zhao Z, Yin Z, Hang Z, Zhang C, Zhao Q (2017b) Association between red and processed meat intake and colorectal adenoma incidence and recurrence: a systematic review and meta-analysis. Oncotarget 9:32373–32382PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • L. V. K. S. Bhaskar
    • 1
  • Akriti Gupta
    • 2
  • Smaranika Pattnaik
    • 3
  1. 1.Guru Ghasidas UniversityBilaspurIndia
  2. 2.Sickle Cell Institute ChhattisgarhRaipurIndia
  3. 3.Department of Biotechnology and BioinformaticsSambalpur UniversitySambalpurIndia

Personalised recommendations