Advertisement

Understanding the Metabolic Cross Talk Between Cancer Cells and Cancer-Associated Fibroblasts

  • Anthony Michael Alvarado
  • Levi Kent Arnold
  • Sufi Mary ThomasEmail author
Chapter
  • 13 Downloads

Abstract

The tumor microenvironment (TME) is a heterogeneous, complex, and dynamic setting in which both invading tumor and local stromal cells reside, coevolve, and form a metabolic symbiosis that dictates downstream steps of cancer development and progression. Besides tumor cells, cancer-associated fibroblasts (CAFs) are the predominant cell type found in the majority of solid tumor microenvironment. It is recognized that cancer cells induce a metabolic phenotype in CAFs that is conducive to cancer progression. In addition, CAFs produce nutrients and metabolites, which are utilized by the tumor for energy production, proliferation, invasion, and migration. However, the precise mechanisms whereby CAFs contribute to the process remain uncertain. CAFs are believed to contribute to tumor metabolism through the production of high energy intermediates to fuel glycolytic, oxidative, amino acid, and fatty acid metabolism of cancer cells. This chapter consolidates recent findings regarding the metabolic cross talk occurring between CAFs and cancer cells within the tumor microenvironment.

Keywords

Cancer-associated fibroblasts Tumor microenvironment Metabolism Metabolites Cancer therapy 

Notes

Acknowledgments

This work was supported by the NIH grant CA227838 to S.M.T. and The National Cancer Institute Cancer Center Support Grant to the University of Kansas Cancer Center, P30CA168524.

References

  1. Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K (2018) Fibroblasts in the tumor microenvironment: shield or spear? Int J Mol Sci 19(5).  https://doi.org/10.3390/ijms19051532
  2. Avagliano A, Granato G, Ruocco MR, Romano V, Belviso I, Carfora A, Montagnani S, Arcucci A (2018) Metabolic reprogramming of cancer associated fibroblasts: the slavery of stromal fibroblasts. Biomed Res Int 2018:6075403CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beacham DA, Cukierman E (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15(5):329–341CrossRefGoogle Scholar
  4. Blomme A, Van Simaeys G, Doumont G, Costanza B, Bellier J, Otaka Y, Sherer F, Lovinfosse P, Boutry S, Palacios AP, De Pauw E, Hirano T, Yokobori T, Hustinx R, Bellahcene A, Delvenne P, Detry O, Goldman S, Nishiyama M, Castronovo V, Turtoi A (2018) Murine stroma adopts a human-like metabolic phenotype in the PDX model of colorectal cancer and liver metastases. Oncogene 37(9):1237–1250CrossRefGoogle Scholar
  5. Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010a) Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9(17):3506–3514CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, Frank PG, Capozza F, Flomenberg N, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010b) The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9(10):1960–1971CrossRefGoogle Scholar
  7. Cuiffo BG, Karnoub AE (2012) Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adhes Migr 6(3):220–230CrossRefGoogle Scholar
  8. Curry JM, Tuluc M, Whitaker-Menezes D, Ames JA, Anantharaman A, Butera A, Leiby B, Cognetti DM, Sotgia F, Lisanti MP, Martinez-Outschoorn UE (2013) Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell Cycle 12(9):1371–1384CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, Lanciotti M, Serni S, Cirri P, Chiarugi P (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res 72(19):5130–5140CrossRefGoogle Scholar
  10. Fu Y, Liu S, Yin S, Niu W, Xiong W, Tan M, Li G, Zhou M (2017) The reverse Warburg effect is likely to be an Achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget 8(34):57813–57825CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gentric G, Mieulet V, Mechta-Grigoriou F (2017) Heterogeneity in cancer metabolism: new concepts in an old field. Antioxid Redox Signal 26(9):462–485CrossRefPubMedPubMedCentralGoogle Scholar
  12. Giatromanolaki A, Koukourakis MI, Koutsopoulos A, Mendrinos S, Sivridis E (2012) The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer. Cancer Biol Ther 13(13):1284–1289CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gonzalez L, Eiro N, Fernandez-Garcia B, Gonzalez LO, Dominguez F, Vizoso FJ (2016) Gene expression profile of normal and cancer-associated fibroblasts according to intratumoral inflammatory cells phenotype from breast cancer tissue. Mol Carcinog 55(11):1489–1502CrossRefGoogle Scholar
  14. Gouirand V, Guillaumond F, Vasseur S (2018) Influence of the tumor microenvironment on cancer cells metabolic reprogramming. Front Oncol 8:117CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hacker HJ, Moore MA, Mayer D, Bannasch P (1982) Correlative histochemistry of some enzymes of carbohydrate metabolism in preneoplastic and neoplastic lesions in the rat liver. Carcinogenesis 3(11):1265–1272CrossRefGoogle Scholar
  16. Huang L, Xu AM, Liu S, Liu W, Li TJ (2014) Cancer-associated fibroblasts in digestive tumors. World J Gastroenterol 20(47):17804–17818CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16(9):582–598CrossRefGoogle Scholar
  18. Knudsen ES, Balaji U, Freinkman E, McCue P, Witkiewicz AK (2016) Unique metabolic features of pancreatic cancer stroma: relevance to the tumor compartment, prognosis, and invasive potential. Oncotarget 7(48):78396–78411CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ko YH, Lin Z, Flomenberg N, Pestell RG, Howell A, Sotgia F, Lisanti MP, Martinez-Outschoorn UE (2011) Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance. Cancer Biol Ther 12(12):1085–1097CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kowalik MA, Columbano A, Perra A (2017) Emerging role of the pentose phosphate pathway in hepatocellular carcinoma. Front Oncol 7:87CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kumar D, New J, Vishwakarma V, Joshi R, Enders J, Lin F, Dasari S, Gutierrez WR, Leef G, Ponnurangam S, Chavan H, Ganaden L, Thornton MM, Dai H, Tawfik O, Straub J, Shnayder Y, Kakarala K, Tsue TT, Girod DA, Van Houten B, Anant S, Krishnamurthy P, Thomas SM (2018) Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Res 78(14):3769–3782CrossRefPubMedPubMedCentralGoogle Scholar
  22. LeBleu VS, Kalluri R (2018) A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 11(4):dmm029447CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li B, Simon MC (2013) Molecular pathways: targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer. Clin Cancer Res 19(21):5835–5841CrossRefGoogle Scholar
  24. Liao Z, Tan ZW, Zhu P, Tan NS (2018) Cancer-associated fibroblasts in tumor microenvironment – accomplices in tumor malignancy. Cell Immunol 343:103729CrossRefGoogle Scholar
  25. Liu FL, Mo EP, Yang L, Du J, Wang HS, Zhang H, Kurihara H, Xu J, Cai SH (2016) Autophagy is involved in TGF-beta1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumor microenvironment. Oncotarget 7(4):4122–4141PubMedGoogle Scholar
  26. Lyssiotis CA, Kimmelman AC (2017) Metabolic interactions in the tumor microenvironment. Trends Cell Biol 27(11):863–875CrossRefPubMedPubMedCentralGoogle Scholar
  27. Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Lisanti MP, Sotgia F (2012a) Ketone bodies and two-compartment tumor metabolism: stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle 11(21):3956–3963CrossRefPubMedPubMedCentralGoogle Scholar
  28. Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP (2012b) Ketone body utilization drives tumor growth and metastasis. Cell Cycle 11(21):3964–3971CrossRefPubMedPubMedCentralGoogle Scholar
  29. Martinez-Outschoorn UE, Lisanti MP, Sotgia F (2014) Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 25:47–60CrossRefPubMedPubMedCentralGoogle Scholar
  30. Micke P, Ostman A (2005) Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets 9(6):1217–1233CrossRefGoogle Scholar
  31. Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Flomenberg N, Tsirigos A, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010) Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling. Cell Cycle 9(12):2412–2422CrossRefGoogle Scholar
  32. Mikkilineni L, Whitaker-Menezes D, Domingo-Vidal M, Sprandio J, Avena P, Cotzia P, Dulau-Florea A, Gong J, Uppal G, Zhan T, Leiby B, Lin Z, Pro B, Sotgia F, Lisanti MP, Martinez-Outschoorn U (2017) Hodgkin lymphoma: a complex metabolic ecosystem with glycolytic reprogramming of the tumor microenvironment. Semin Oncol 44(3):218–225CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mira A, Morello V, Cespedes MV, Perera T, Comoglio PM, Mangues R, Michieli P (2017) Stroma-derived HGF drives metabolic adaptation of colorectal cancer to angiogenesis inhibitors. Oncotarget 8(24):38193–38213CrossRefPubMedPubMedCentralGoogle Scholar
  34. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pan B, Liao Q, Niu Z, Zhou L, Zhao Y (2015) Cancer-associated fibroblasts in pancreatic adenocarcinoma. Future Oncol 11(18):2603–2610CrossRefGoogle Scholar
  36. Patel BB, Ackerstaff E, Serganova IS, Kerrigan JE, Blasberg RG, Koutcher JA, Banerjee D (2017) Tumor stroma interaction is mediated by monocarboxylate metabolism. Exp Cell Res 352(1):20–33CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pavlides S, Tsirigos A, Migneco G, Whitaker-Menezes D, Chiavarina B, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG, Martinez-Outschoorn UE, Howell A, Sotgia F, Lisanti MP (2010) The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 9(17):3485–3505CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I, Martinez-Outschoorn UE, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP (2012) Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 16(11):1264–1284CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8(23):3984–4001CrossRefGoogle Scholar
  40. Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331CrossRefGoogle Scholar
  41. Ramamonjisoa N, Ackerstaff E (2017) Characterization of the tumor microenvironment and tumor-stroma interaction by non-invasive preclinical imaging. Front Oncol 7:3CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ringuette Goulet C, Bernard G, Tremblay S, Chabaud S, Bolduc S, Pouliot F (2018) Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFbeta signaling. Mol Cancer Res 16(7):1196–1204CrossRefGoogle Scholar
  43. Romero IL, Mukherjee A, Kenny HA, Litchfield LM, Lengyel E (2015) Molecular pathways: trafficking of metabolic resources in the tumor microenvironment. Clin Cancer Res 21(4):680–686CrossRefPubMedPubMedCentralGoogle Scholar
  44. Santi A, Kugeratski FG, Zanivan S (2018) Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 18(5–6):e1700167CrossRefGoogle Scholar
  45. Stumpf H, Bannasch P (1994) Overexpression of glucose-6-phosphate-dehydrogenase in rat hepatic preneoplasia and neoplasia. Int J Oncol 5(6):1255–1260PubMedGoogle Scholar
  46. Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, Satoh N, Kyotani K, Mizowaki T, Imahori T, Ejima Y, Masui K, Gini B, Yang H, Hosoda K, Sasaki R, Mischel PS, Kohmura E (2015) Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest 125(4):1591–1602CrossRefPubMedPubMedCentralGoogle Scholar
  47. Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, Yi M, Wallace TA, Issaq HJ, Zhou M, Killian JK, Stevenson HS, Karoly ED, Chan K, Samanta S, Prieto D, Hsu TY, Kurley SJ, Putluri V, Sonavane R, Edelman DC, Wulff J, Starks AM, Yang Y, Kittles RA, Yfantis HG, Lee DH, Ioffe OB, Schiff R, Stephens RM, Meltzer PS, Veenstra TD, Westbrook TF, Sreekumar A, Ambs S (2014) MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest 124(1):398–412CrossRefGoogle Scholar
  48. Tsun ZY, Possemato R (2015) Amino acid management in cancer. Semin Cell Dev Biol 43:22–32CrossRefPubMedPubMedCentralGoogle Scholar
  49. Valencia T, Kim JY, Abu-Baker S, Moscat-Pardos J, Ahn CS, Reina-Campos M, Duran A, Castilla EA, Metallo CM, Diaz-Meco MT, Moscat J (2014) Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26(1):121–135CrossRefPubMedPubMedCentralGoogle Scholar
  50. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530CrossRefPubMedPubMedCentralGoogle Scholar
  51. Weber CE, Kuo PC (2012) The tumor microenvironment. Surg Oncol 21(3):172–177CrossRefGoogle Scholar
  52. Wen S, Niu Y, Yeh S, Chang C (2015) BM-MSCs promote prostate cancer progression via the conversion of normal fibroblasts to cancer-associated fibroblasts. Int J Oncol 47(2):719–727CrossRefPubMedPubMedCentralGoogle Scholar
  53. Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, Birbe RC, Howell A, Pavlides S, Gandara R, Pestell RG, Sotgia F, Philp NJ, Lisanti MP (2011) Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle 10(11):1772–1783CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U (2017) Metabolic coupling and the reverse Warburg effect in cancer: implications for novel biomarker and anticancer agent development. Semin Oncol 44(3):198–203CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433CrossRefPubMedPubMedCentralGoogle Scholar
  56. Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R, Sneddon S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2012) Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 11(6):1108–1117CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wu D, Zhuo L, Wang X (2017) Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors. Semin Cell Dev Biol 64:125–131CrossRefGoogle Scholar
  58. Xing Y, Zhao S, Zhou BP, Mi J (2015) Metabolic reprogramming of the tumour microenvironment. FEBS J 282(20):3892–3898CrossRefGoogle Scholar
  59. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123–10128CrossRefGoogle Scholar
  60. Zhang D, Wang Y, Shi Z, Liu J, Sun P, Hou X, Zhang J, Zhao S, Zhou BP, Mi J (2015) Metabolic reprogramming of cancer-associated fibroblasts by IDH3alpha downregulation. Cell Rep 10(8):1335–1348CrossRefGoogle Scholar
  61. Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, Alvarez H, Gupta S, Maiti SN, Cooper L, Peehl D, Ram PT, Maitra A, Nagrath D (2016) Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife 5:e10250CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Anthony Michael Alvarado
    • 1
  • Levi Kent Arnold
    • 2
    • 3
  • Sufi Mary Thomas
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of NeurosurgeryUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Department of OtolaryngologyUniversity of Kansas Medical CenterKansas CityUSA
  3. 3.Department of Cancer BiologyUniversity of Kansas Medical CenterKansas CityUSA
  4. 4.Department of Anatomy and Cellular BiologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations