Alterations in Metabolite-Driven Gene Regulation in Cancer Metabolism

  • Saurabh Kumar JhaEmail author
  • Rahul Yadav
  • Kumari Swati
  • Niraj Kumar Jha
  • Ankur Sharma
  • Fahad Khan
  • Neeraj Kumar
  • Parma Nand
  • Prabhjot Kaur
  • Tanaya Gover
  • Geetika Rawat


Cancer is the leading cause of mortality among humans globally. Knowing about the etiology underlying the advancement of cancer is imperative for curtailing the monetary and social burden of cancer. In addition to genetic mutations, altered metabolism involved metabolic rewiring is needed in cancer cells to support their high nutritional demand needed for energy generation. Cancer metabolism also refers to the perturbations in biochemical pathways that are reported in tumor cells compared with most of the normal cells. Metabolic impairments in tumor cells are more frequent which include aerobic glycolysis, decreased oxidative phosphorylation, and the accelerated production of biosynthetic intermediates crucial to the proliferative cells for their growth and development. Interruptions in metabolic cascades responsible for fueling energy into the cancer cells for their growth has been observed in most of the cancer forms. These interruptions, in turn, facilitates growth in tumor cells by ceasing biochemical signals used to inhibit tumor initiation, hence eventually increase the metastatic character of the tumor cells. However, the precise mechanisms whereby metabolic pathways contribute to the cancer prognosis remain uncertain. This chapter thus consolidates recent findings regarding cross talk between metabolic alterations and cancer biology. Further, a concrete and deep understanding of this heterogeneity may enable the advancement and optimization of potential therapeutic approaches that target biochemical pathways associated with proliferation of malignant cells.


Cancer Metabolism Metabolites Glycolysis TCA cycle Oncogenes Therapeutics 


  1. Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39(4):191–198PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24(7):400–406PubMedPubMedCentralCrossRefGoogle Scholar
  3. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95PubMedCrossRefGoogle Scholar
  4. Cantor JR, Sabatini DM (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2(10):881–898PubMedPubMedCentralCrossRefGoogle Scholar
  5. Cardaci S, Ciriolo MR (2012) TCA cycle defects and cancer: when metabolism tunes redox state. Int J Cell Biol 2012:161837PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5(10):786–795PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chajès V, Cambot M, Moreau K, Lenoir GM, Joulin V (2006) Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res 66(10):5287–5294PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chiacchiera F, Simone C (2010) The AMPK-FoxO3A axis as a target for cancer treatment. Cell Cycle 9(6):1091–1096PubMedCrossRefPubMedCentralGoogle Scholar
  9. Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu S, Hsueh T, Chen Y, Wang W, Youngkin D, Liau L, Martin N, Becker D, Bergsneider M, Lai A, Green R, Oglesby T, Koleto M, Trent J, Horvath S, Mischel PS, Mellinghoff IK, Sawyers CL (2008) Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5(1):e8PubMedPubMedCentralCrossRefGoogle Scholar
  10. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumor-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70:859–862PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15:6479–6483PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA (2004) Incidence and distribution of argininosuccinate synthetase deficiency in human cancers:a method for identifying cancers sensitive to arginine deprivation. Cancer 100(4):826–833PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dong G, Mao Q, Xia W, Xu Y, Wang J, Xu L, Jiang F (2016) PKM2 and cancer: the function of PKM2 beyond glycolysis. Oncol Lett 11(3):1980–1986PubMedPubMedCentralCrossRefGoogle Scholar
  15. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171–183PubMedPubMedCentralCrossRefGoogle Scholar
  16. Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86:839–848PubMedCrossRefPubMedCentralGoogle Scholar
  17. Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley DR, Gleave ME, Nelson CC (2004) Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res 64(6):2212–2221PubMedCrossRefPubMedCentralGoogle Scholar
  18. Faller WJ, Jackson TJ, Knight JR, Ridgway RA, Jamieson T, Karim SA, Jones C, Radulescu S, Huels DJ, Myant KB, Dudek KM, Casey HA, Scopelliti A, Cordero JB, Vidal M, Pende M, Ryazanov AG, Sonenberg N, Meyuhas O, Hall MN, Bushell M, Willis AE, Sansom OJ (2015) mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 517(7535):497–500PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12:108–113PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gottlieb E, Vousden KH (2010) p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol 2:a001040PubMedPubMedCentralCrossRefGoogle Scholar
  22. Greer SN, Metcalf JL, Wang Y, Ohh M (2012) The updated biology of hypoxia-inducible factor. EMBO J 31:2448–2460PubMedPubMedCentralCrossRefGoogle Scholar
  23. Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H, Lin KY, Huang TT, Akhavan D, Hock MB, Zhu S, Kofman AA, Bensinger SJ, Yong WH, Vinters HV, Horvath S, Watson AD, Kuhn JG, Robins HI, Mehta MP, Wen PY, DeAngelis LM, Prados MD, Mellinghoff IK, Cloughesy TF, Mischel PS (2009) EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2(101):ra82PubMedPubMedCentralCrossRefGoogle Scholar
  24. Guo H, Xiang Z, Zhang Y, Sun D (2019) Inhibiting 6-phosphogluconate dehydrogenase enhances chemotherapy efficacy in cervical cancer via AMPK-independent inhibition of RhoA and Rac1. Clin Transl Oncol 21(4):404–411PubMedCrossRefPubMedCentralGoogle Scholar
  25. Haimovitz-Friedman A, Kolesnick RN, Fuks Z (1997) Ceramide signaling in apoptosis. Br Med Bull 53(3):539–553PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hamanaka RB, Chandel NS (2012) Targeting glucose metabolism for cancer therapy. J Exp Med 209(2):211–215PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8(4):311–321PubMedCrossRefPubMedCentralGoogle Scholar
  28. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100(21):12027–12032PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5):703–707PubMedCrossRefPubMedCentralGoogle Scholar
  30. Huang WC, Li X, Liu J, Lin J, Chung LW (2012) Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol Cancer Res 10(1):133–142PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kennedy KM, Dewhirst MW (2010) Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 6(1):127–148PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kerr EM, Martins CP (2018) Metabolic rewiring in mutant Kras lung cancer. FEBS J 285(1):28–41PubMedCrossRefGoogle Scholar
  34. Knelson EH, Nee JC, Blobe GC (2014) Heparan sulfate signaling in cancer. Trends Biochem Sci 39(6):277–288PubMedPubMedCentralCrossRefGoogle Scholar
  35. Komada Y, Zhang XL, Zhou YW, Ido M, Azuma E (1997) Apoptotic cell death of human T lymphoblastoid cells induced by arginine deiminase. Int J Hematol 65(2):129–141PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482PubMedCrossRefGoogle Scholar
  37. Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol 19(22):R1046–R1052PubMedPubMedCentralCrossRefGoogle Scholar
  38. Lee M, Yoon JH (2015) Metabolic interplay between glycolysis and mitochondrial oxidation: the reverse Warburg effect and its therapeutic implication. World J Biol Chem 6(3):148–161PubMedPubMedCentralCrossRefGoogle Scholar
  39. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344PubMedCrossRefPubMedCentralGoogle Scholar
  40. Li W, Saud SM, Young MR, Chen G, Hua B (2015) Targeting AMPK for cancer prevention and treatment. Oncotarget 6(10):7365–7378PubMedPubMedCentralGoogle Scholar
  41. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218PubMedPubMedCentralCrossRefGoogle Scholar
  42. Locasale JW, Cantley LC (2011) Metabolic flux and the regulation of mammalian cell growth. Cell Metab 14(4):443–451PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277(26):23111–23115PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356(2 Pt A):156–164PubMedCrossRefPubMedCentralGoogle Scholar
  45. Magda D, Lecane P, Prescott J, Thiemann P, Ma X, Dranchak PK, Toleno DM, Ramaswamy K, Siegmund KD, Hacia JG (2008) mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft. BMC Genomics 3(9):521CrossRefGoogle Scholar
  46. Morales DR, Morris AD (2015) Metformin in cancer treatment and prevention. Annu Rev Med 66:17–29PubMedCrossRefPubMedCentralGoogle Scholar
  47. Nagarajan A, Malvi P, Wajapeyee N (2016) Oncogene-directed alterations in cancer cell metabolism. Trends Cancer 2(7):365–377PubMedPubMedCentralCrossRefGoogle Scholar
  48. Nishioka T, Oda Y, Seino Y, Yamamoto T, Inagaki N, Yano H, Imura H, Shigemoto R, Kikuchi H (1992) Distribution of the glucose transporters in human brain tumors. Cancer Res 52(14):3972–3979PubMedPubMedCentralGoogle Scholar
  49. Parker SJ, Metallo CM (2015) Metabolic consequences of oncogenic IDH mutations. Pharmacol Ther 152:54–62PubMedPubMedCentralCrossRefGoogle Scholar
  50. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646PubMedCrossRefPubMedCentralGoogle Scholar
  51. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E et al (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146:408–420PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ponzoni M, Bocca P, Chiesa V, Decensi A, Pistoia V, Raffaghello L, Rozzo C, Montaldo PG (1995) Differential effects of N-(4-hydroxyphenyl)retinamide and retinoic acid on neuroblastoma cells: apoptosis versus differentiation. Cancer Res 55(4):853–861PubMedPubMedCentralGoogle Scholar
  53. Romero IL, Mukherjee A, Kenny HA, Litchfield LM, Lengyel E (2015) Molecular pathways: trafficking of metabolic resources in the tumor microenvironment. Clin Cancer Res 21(4):680–686PubMedPubMedCentralCrossRefGoogle Scholar
  54. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56PubMedCrossRefPubMedCentralGoogle Scholar
  55. Semenza GL (2012) Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb Symp Quant Biol 76:347–353CrossRefGoogle Scholar
  56. Shao W, Espenshade PJ (2012) Expanding roles for SREBP in metabolism. Cell Metab 16(4):414–419PubMedPubMedCentralCrossRefGoogle Scholar
  57. Stanton RC, Seifter JL, Boxer DC, Zimmerman E, Cantley LC (1991) Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. Correlation with increased enzymatic activity. J Biol Chem 266(19):12442–12448PubMedPubMedCentralGoogle Scholar
  58. Su TS, Tsai TF, Chi CW, Han SH, Chou CK (1990) Elevation of facilitated glucose-transporter messenger RNA in human hepatocellular carcinoma. Hepatology 11(1):118–122PubMedCrossRefPubMedCentralGoogle Scholar
  59. Swinnen JV, Brusselmans K, Verhoeven G (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9(4):358–365PubMedCrossRefPubMedCentralGoogle Scholar
  60. Tsun ZY, Possemato R (2015) Amino acid management in cancer. Semin Cell Dev Biol 43:22–32PubMedPubMedCentralCrossRefGoogle Scholar
  61. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274PubMedCrossRefGoogle Scholar
  62. van Horssen R, Buccione R, Willemse M, Cingir S, Wieringa B, Attanasio F (2013) Cancer cell metabolism regulates extracellular matrix degradation by invadopodia. Eur J Cell Biol 92(3):113–121PubMedCrossRefGoogle Scholar
  63. Vega-Naredo I, Loureiro R, Mesquita KA, Barbosa IA, Tavares LC, Branco AF, Erickson JR, Holy J, Perkins EL, Carvalho RA, Oliveira PJ (2014) Mitochondrial metabolism directs stemness and differentiation in P19 embryonal carcinoma stem cells. Cell Death Differ 21(10):1560–1574PubMedPubMedCentralCrossRefGoogle Scholar
  64. Vlodavsky I, Mohsen M, Lider O, Svahn CM, Ekre HP, Vigoda M, Ishai-Michaeli R, Peretz T (1994) Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis 14(1–6):290–302PubMedGoogle Scholar
  65. Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9:691–700PubMedCrossRefGoogle Scholar
  66. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12(10):685–698PubMedPubMedCentralCrossRefGoogle Scholar
  67. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514PubMedPubMedCentralCrossRefGoogle Scholar
  68. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314PubMedCrossRefPubMedCentralGoogle Scholar
  69. Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Ertel A, Pestell RG, Broda P, Minetti C, Lisanti MP, Sotgia F (2011) Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 10(23):4047–4064PubMedPubMedCentralCrossRefGoogle Scholar
  70. Wick AN, Drury DR, Nakada HI, Wolfe JB (1957) Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem 224(2):963–969PubMedPubMedCentralGoogle Scholar
  71. Wise DR, DeBeradinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787PubMedPubMedCentralCrossRefGoogle Scholar
  72. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433PubMedPubMedCentralCrossRefGoogle Scholar
  73. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484PubMedCrossRefPubMedCentralGoogle Scholar
  74. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30PubMedPubMedCentralCrossRefGoogle Scholar
  75. Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N, Yamada Y, Inoue K, Manabe T, Imura H (1990) Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 170(1):223–230PubMedCrossRefPubMedCentralGoogle Scholar
  76. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178:93–105PubMedPubMedCentralCrossRefGoogle Scholar
  77. Zhang B, Dong LW, Tan YX, Zhang J, Pan YF, Yang C, Li MH, Ding ZW, Liu LJ, Jiang TY, Yang JH, Wang HY (2013) Asparagine synthetase is an independent predictor of surgical survival and a potential therapeutic target in hepatocellular carcinoma. Br J Cancer 109(1):14–23PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Saurabh Kumar Jha
    • 1
    Email author
  • Rahul Yadav
    • 2
  • Kumari Swati
    • 1
  • Niraj Kumar Jha
    • 1
  • Ankur Sharma
    • 2
  • Fahad Khan
    • 3
  • Neeraj Kumar
    • 4
  • Parma Nand
    • 1
  • Prabhjot Kaur
    • 2
  • Tanaya Gover
    • 2
  • Geetika Rawat
    • 2
  1. 1.Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaIndia
  2. 2.Department of Life Science, School of Basic Science and Research (SBSR)Sharda UniversityGreater NoidaIndia
  3. 3.Department of BiotechnologyNoida Institute of Engineering & Technology (NIET)Greater NoidaIndia
  4. 4.Department of ChemistrySRM UniversityModi NagarIndia

Personalised recommendations