Numerical and Physical Model Analysis Comparison for Velocity of Water at Spillway

  • S. A. A. Zaki
  • N. H. HassanEmail author
  • M. H. Zawawi
  • M. A. Abas
  • A. Z. A. Mazlan
  • M. R. R. M. A. Zainol
  • M. R. M. Radzi
Conference paper
Part of the Water Resources Development and Management book series (WRDM)


High velocity may affect the structure integrity due to long exposure. Thus, this study was done to assess velocity specifically at energy dissipater and stilling basin of Chenderoh Dam spillway by numerical and physical model analysis. A 3D model drawing of 1:20 scaled had be drawn to be analysed and as a reference for physical model development. Numerical model had been analysed based on the fundamental of computational fluid dynamic (CFD). Physical model of the spillway has been developed to verify the accuracy of numerical model analysis. The result shows that both of the difference percentage at energy dissipater and stilling basin for velocity are less than 10% which are 4.3135% and 4.1879% respectively. Therefore, the numerical and physical model result for 1:20 scale model can be used to validate this dam numerical simulation result up to 95% precision.


Velocity Energy dissipater Stilling basin Numerical and physical model Computational fluid dynamic (CFD) 



This research project was funded under the TNB Consultancy grant (U-TG- CR-18-04).


  1. 1.
    Structures, G.C.: Chapter 9 Hydraulic Structures Contents, vol. 2, Jan 2016Google Scholar
  2. 2.
    Muda, C.: Condition Assessment on Hydropower Dam based on Simulation Approach: a Review, vol. 020254 (2018)Google Scholar
  3. 3.
    Holder, G., Villeneuve, M., Lasalle, G.C.: Computational Fluid DynamicGoogle Scholar
  4. 4.
    Andrew, I.: CFD Modelling for Spillways, no. 38Google Scholar
  5. 5.
    Kim, D.G., Park, J.H.: Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model. J. Civ. Eng. KSCE 9(2), 161–169 (2005)CrossRefGoogle Scholar
  6. 6.
    Mohamad, G., et al.: Structural Dynamic Analysis of the Chenderoh Dam Sector, vol. 02002, pp. 1–6 (2018)Google Scholar
  7. 7.
    Moradinejad, A., Parssai, A., Noriemamzade, M.: Numerical modeling of flow pattern in kamal saleh dam spillway approach channel. Appl. Sci. Rep. 10(2) (2015)Google Scholar
  8. 8.
    Zawawi, M.H., Swee, M.G., Zainal, N.S., Zahari, N.M., Kamarudin, M.A., Ramli, M.Z.: Computational Fluid Dynamic Analysis For Independent Floating Water Treatment Device, vol. 020122, p. 020122 (2017)Google Scholar
  9. 9.
    Tobergte, D.R., Curtis, S.: Hydraulic Structures, vol. 53, no. 9 (2013)Google Scholar
  10. 10.
    Silva, M.R.: 3D Numerical Modeling of Flow Along Spillways with Free Surface Complementary Spillway of Salamonde, pp. 1–12 (2006)Google Scholar
  11. 11.
    Yeo, H., Kang, J., Jung, S.: An experimental study for construction of emergency spillway in daechung dam. Engineering 2012(September), 568–577 (2012)CrossRefGoogle Scholar
  12. 12.
    U. S. Society: Materials for embankment dams Penman. A D M Int. Water Power Dam ConstrV35, N1, P15, 22(1) 1985Google Scholar
  13. 13.
    Singarella, P.N., Adams, E.E.: Physical and Numerical Modeling of the, pp. 71–75, Mar 1982Google Scholar
  14. 14.
    Olsen, N.R.B.: CFD Modelling for Hydraulic Structures, May 2001Google Scholar
  15. 15.
    Parsaie, A., Haghiabi, A.H., Moradinejad, A.: CFD modeling of flow pattern in spillway’s approach channel. Sustain. Water Resour. Manag. 1(3), 245–251 (2015)CrossRefGoogle Scholar
  16. 16.
    Anderson, J.D.: Computational fluid dynamics an introduction. Complex Water Surf. ACM TOG 21, 736–744 (2002)Google Scholar
  17. 17.
    Chanel, P.G.: An Evaluation of Computational Fluid Dynamics for Spillway Modeling, p. 84 (2008)Google Scholar
  18. 18.
    Dehdar-Behbahani, S., Parsaie, A.: Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: balaroud dam, Iran. Alex. Eng. J. 55(1), 467–473 (2016)CrossRefGoogle Scholar
  19. 19.
    Hou, G., Wang, J., Layton, A.: Numerical methods for fluid-structure interaction—a review. Commun. Comput. Phys. 12(2), 337–377 (2012)CrossRefGoogle Scholar
  20. 20.
    Thacker, B.H., Doebling, S.W., Hemez, F.M., Anderson, M.C., Pepin, J.E., Rodriguez, E.A.: Concepts of model verification and validation. Concepts Model Verif. Valid. 41 (2004)Google Scholar
  21. 21.
    Kiricci, V., Celik, A.O.: Modeling Hydraulic Structures With Computational Fluid Dynamics, pp. 585–591, Oct 2014Google Scholar
  22. 22.
    Dynamics, C.F., Our, B., Ghd, E., Computational, S., Dynamics, F., Cfx, A.: Hydraulic Modelling for Dams and Associated StructuresGoogle Scholar
  23. 23.
    Novák, P.: Hydraulic Structures, p. 700 (2007)Google Scholar
  24. 24.
    Haga, K., Terada, A., Kaminaga, M., Hino, R.: Water Flow Experiment using the PIV Technique and the Thermal Hydraulic Analysis on the Cross-Flow Type Mercury Target Model (2001)Google Scholar
  25. 25.
    Thanh, N.C., Ling-Ling, W.: Physical and numerical model of flow through the spillways with a breast wall. KSCE J. Civ. Eng. 19(7), 2317–2324 (2015)CrossRefGoogle Scholar
  26. 26.
    Tudy, S.T.C.A.S.E.S.: Physical Modeling for Complex Hydraulic Structures (Main Pumping a. Froude number (Fr): b. Reynolds number (Re), pp. 21–23, Apr 2016Google Scholar
  27. 27.
    Chanson, H.: Physical modelling of hydraulics. Hydraul. Open Channel Flow 261–283 (1999)Google Scholar
  28. 28.
    Investigation, P.M.: Andri Gunnarsson (2012)Google Scholar
  29. 29.
    Kiricci, V., Celik, A.O.: Modeling Hydraulics Structures with Computational Fluid Dynamics (CFD), vol. 2014, pp. 585–591, Oct 2014Google Scholar
  30. 30.
    Duró, G.: Physical Modeling and Cfd Comparison : Case Study of a Hydro-Combined Power Station in Spillway Mode, no. 2007, pp. 36–47 (2012)Google Scholar
  31. 31.
    Gianluca Iaccarino: Simulation of Turbulent Flows. Stanf. Lect. Notes Course ME469B (2004)Google Scholar
  32. 32.
    FLUENT, I.: Modeling Turbulent Flows, pp. 2–6, 6–49. ANSYS. Inc. (2006)Google Scholar
  33. 33.
    Delafosse, A., Line, A., Morchain, J., Guiraud, P.: LES and URANS simulations of hydrodynamics in mixing tank: comparison to PIV experiments. Chem. Eng. Res. Des. 86(12), 1322–1330 (2008)CrossRefGoogle Scholar
  34. 34.
    Ng, F.C., et al.: Fluid/structure interaction study on the variation of radial gate’s gap height in dam. IOP Conference Series: Materials Science and Engineering, vol. 370, no. 1 (2018)CrossRefGoogle Scholar
  35. 35.
    Stamhuis, E.J.: Basics and Principles of Particle Image Velocimetry (PIV) for Mapping Biogenic and Biologically Relevant Flows, pp. 463–479 (2006)CrossRefGoogle Scholar
  36. 36.
    Azman, A., et al.: Modelling of Cascade Aerator, vol. 04005, pp. 1–6 (2018)Google Scholar
  37. 37.
    Arias, I., Knap, J., Chalivendra, V.B., Hong, S., Ortiz, M., Rosakis, A.J.: Numerical modelling and experimental validation of dynamic fracture events along weak planes. Comput. Methods Appl. Mech. Eng. 196(37–40 SPEC. ISS.), 3833–3840 (2007)CrossRefGoogle Scholar
  38. 38.
    Kane, J.M.: A user’ guide to clozapine. Acta Psychiatr. Scand. 123(6), 407–408 (2011)CrossRefGoogle Scholar
  39. 39.
    Kamaruddin, M.A.: Fluid-Structure Interactions Study on Hydraulic Structures: A Review, vol. 020244 (2018)Google Scholar
  40. 40.
    Zawawi, M.H., Saleha, A., Salwa, A., Hassan, N.H., Zahari, N.M., Ramli, M.Z.: A Review: Fundamentals of Computational Fluid Dynamics, vol. 020252 (2018)Google Scholar
  41. 41.
    Georgoulas, A., Angelidis, P., Kopasakis, K., Kotsovinos, N.: 3D Multiphase Numerical Modelling for Turbidity Current Flows (2006)Google Scholar
  42. 42.
    Euler-lagrange, T.: The lagrangian method. Introd. Class. Mech. Probl. Solut. (2008)Google Scholar
  43. 43.
    Muda, Z.C.: Computational Fluid Dynamic Analysis at Dam Spillway due to Different Gate Openings, vol. 020245 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • S. A. A. Zaki
    • 1
  • N. H. Hassan
    • 2
    Email author
  • M. H. Zawawi
    • 2
  • M. A. Abas
    • 3
  • A. Z. A. Mazlan
    • 3
  • M. R. R. M. A. Zainol
    • 4
  • M. R. M. Radzi
    • 5
  1. 1.Sultan Mahmud Hydropower Station, Tenaga Nasional BerhadKuala BerangMalaysia
  2. 2.Uniten R&D Sdn BhdUniversiti Tenaga NasionalKajangMalaysia
  3. 3.School of Mechanical EngineeringUniversiti Sains MalaysiaParit BuntarMalaysia
  4. 4.School of Civil EngineeringUniversiti Sains MalaysiaParit BuntarMalaysia
  5. 5.Generation DivisionTenaga Nasional BerhadKuala LumpurMalaysia

Personalised recommendations