Advertisement

Improvement of Dam Management in Terms of WAM Using Machine Learning

  • Bashirah FazliEmail author
  • Mohammad Fikry Abdullah
  • Harlisa Zulkifli
  • Mohd Fadhil Kasim
  • Hin Lee Lee
  • Md. Nasir Md. Noh
  • Farashazillah Yahya
Conference paper
Part of the Water Resources Development and Management book series (WRDM)

Abstract

The evolution of a data-rich ecosystem for Water Asset Management (WAM) comes with a rapid changing of the information landscape. Data inventories are created with asset information, which includes information such as maintenance history, piping ID, flow, failure mode, risk assessment history, uncertainty, spillway, weir, slope, and seepage. With more massive datasets across departments involving in dam operation management, data silos bring challenges of integrating and utilising the data sources into a single platform for analysis, visualisation, and decision-making. Therefore, this research intends to introduce a conceptual framework for WAM to meet the needs of practical engineering applications in dam management using machine learning. The idea of engaging machine learning is to determine rules that are embedded within the data by applying concepts like pattern recognition and data analytics. The rules are replicated into algorithms to model prediction, forecast or projection. Collecting and analysing data from the total asset of dam safety monitoring brings valuable insights in terms of asset management strategies. For instance, enhancing optimal maintenance and replacement of the assets, and consequently improving the utilities more efficiently. This paper discusses the research framework on how machine learning is used as a transformative tool for the data-rich world of WAM. The proposed approach offers the potential of a relatively new area of research in Malaysia dam management beneficial to dam managers and stakeholders, which facilitates effective data management and developing strategic benefits to the community, environment, and economy.

Keywords

Dam management Decision making Knowledge management Machine learning Water asset management 

References

  1. 1.
    Duncan Ellison, T., Mizutani, T., Thomas, Z.: ISO website. https://www.iso.org/news/2013/07/Ref1762.html. Accessed 01 July 2019
  2. 2.
    Palmieri, A.: Rehabilitation of Dams: Financial instruments, O&M and Sustainability, Keynote Speaker at International Workshop Water Infrastructure. World Bank website, http://pubdocs.worldbank.org/en/953031506008909229/2-Palmieri-Sofia-workshop-dam-rehabilitation-170918.pdf. Accessed 01 July 2019
  3. 3.
    Starzyk, J.: Water resource planning and management using motivated machine learning. In: Proceedings of the 10th IHP/IAHS George Kovacs Colloquium, Paris, France, 2–3 July 2010, pp. 214–220 (2010)Google Scholar
  4. 4.
    Chang, L.C., Chang, F.J., Yang, S.N., Kao, I., Ku, Y.Y., Kuo, C.L., Amin, I.: Building an Intelligent Hydroinformatics Integration Platform for Regional Flood Inundation Warning Systems (2019)Google Scholar
  5. 5.
    Hipni, A., El-shafie, A., Najah, A., Karim, O.A., Hussain, A., Mukhlisin, M.: Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS). Water Resour. Manag. 27(10), 3803–3823 (2013)CrossRefGoogle Scholar
  6. 6.
    Campos, J., Sharma, P., Gabiria, U.G., Jantunen, E., Baglee, D.: A big data analytical architecture for the Asset Management. Procedia CIRP 64, 369–374 (2017)CrossRefGoogle Scholar
  7. 7.
    Zaidi, S.M.A., Chandola, V., Allen, M.R., Sanyal, J., Stewart, R.N., et al.: Machine learning for energy-water nexus: challenges and opportunities. Big Earth Data 2(3), 228–267 (2018).  https://doi.org/10.1080/20964471.2018.1526057CrossRefGoogle Scholar
  8. 8.
    Jain, D.A., Joshi, U.C., Varshney, A.K.: Short-term water demand forecasting using artificial neural networks: IIT Kanpur experience. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 2, pp. 459–462. IEEE, Barcelona, Spain (2000)Google Scholar
  9. 9.
    Bougadis, J., Adamowski, K., Diduch, R.: Short-term municipal water demand forecasting. Hydrol. Process. 19(1), 137–148 (2005)CrossRefGoogle Scholar
  10. 10.
    Msiza, I.S., Nelwamondo, F.V., Marwala, T.: Artificial neural networks and support vector machines for water demand time series forecasting. In: IEEE International Conference on Systems, Man and Cybernetics, ISIC 2007, pp. 638–643. IEEE, Montreal, Que., Canada (2007)Google Scholar
  11. 11.
    Suh, D., Kim, H., Kim, J.: Estimation of water demand in residential building using machine learning approach. In: 2015 5th International Conference on IT Convergence and Security (ICITCS), pp. 1–2. IEEE, Kuala Lumpur, Malaysia (2015)Google Scholar
  12. 12.
    Chen, L., Zhang, T.-Q.: Hourly water demand forecast model based on least squares support vector machine. J. Harbin Inst. Technol. 9, 030 (2006)Google Scholar
  13. 13.
    Tu-Qiao, C.L.Z.: Hourly water demand forecast model based on Bayesian least squares support vector machine. J. Tianjin Univ. 9, 005 (2006)Google Scholar
  14. 14.
    Oh, H.-S., Yamauchi, H.: An economic analysis of the patterns and trends in water consumption within the service area of the Honolulu Board of water supply, pp. 84. Univ. of Honolulu, Honolulu (1974)Google Scholar
  15. 15.
    Tinker, A., Bame, S., Burt, R., Speed, M.: Impact of “non-behavioral fixed effects” on water use: Weather and economic construction differences on residential water use in Austin, Texas. Electron. Green J. 1, 22 (2005)Google Scholar
  16. 16.
    Zhang, H.H., Brown, D.F.: Understanding urban residential water use in Beijing and Tianjin, China. Habitat Int. 29(3), 469–491 (2005)CrossRefGoogle Scholar
  17. 17.
    Schleich, J., Hillenbrand, T.: Determinants of residential water demand in Germany. Ecol. Econ. 68(6), 1756–1769 (2009)CrossRefGoogle Scholar
  18. 18.
    Miaou, S.-P.: A class of time series urban water demand models with nonlinear climatic effects. Water Resour. Res. 26(2), 169–178 (1990)CrossRefGoogle Scholar
  19. 19.
    Jowitt, P.W., Xu, C.: Demand forecasting for water distribution systems. Civ. Eng. Syst. 9(2), 105–121 (1992)CrossRefGoogle Scholar
  20. 20.
    Arandia, E., Ba, A., Eck, B., McKenna, S.: Tailoring seasonal time series models to forecast short-term water demand. J. Water Resour. Plan. Manag. 142(3), 04015067 (2015)CrossRefGoogle Scholar
  21. 21.
    Al-Zahrani, M.A., Abo-Monasar, A.: Urban residential water demand prediction based on artificial neural networks and time series models. Water Resour. Manag. 29(10), 3651–3662 (2015)CrossRefGoogle Scholar
  22. 22.
    Pastor-Jabaloyes, L., Arregui, F., Cobacho, R.: Water end use disaggregation based on soft computing techniques. Water 10(1), 46 (2018)CrossRefGoogle Scholar
  23. 23.
    Noiva, K., Fernández, J.E., Wescoat Jr., J.L.: Cluster analysis of urban water supply and demand: toward large-scale comparative sustainability planning. Sustain. Cities Soc. 27, 484–496 (2016)CrossRefGoogle Scholar
  24. 24.
    Zhang, H., Du, Q., Yao, M., Ren, F.: Evaluation and clustering maps of groundwater wells in the red beds of Chengdu, Sichuan, China. Sustainability 8(1), 87 (2016)CrossRefGoogle Scholar
  25. 25.
    Nguyen, K.A., Stewart, R.A., Zhang, H.: An intelligent pattern recognition model to automate the categorisation of residential water end-use events. Environ. Model Softw. 47, 108–127 (2013)CrossRefGoogle Scholar
  26. 26.
    Nguyen, K.A., Stewart, R.A., Zhang, H.: An autonomous and intelligent expert system for residential water end-use classification. Expert Syst. Appl. 41(2), 342–356 (2014)CrossRefGoogle Scholar
  27. 27.
    Nguyen, K.A., Stewart, R.A., Zhang, H., Jones, C.: Intelligent autonomous system for residential water end use classification: autoflow. Appl. Soft Comput. 31, 118–131 (2015)CrossRefGoogle Scholar
  28. 28.
    McManamay, R.A.: Quantifying and generalizing hydrologic responses to dam regulation using a statistical modeling approach. J. Hydrol. 519, 1278–1296 (2014)CrossRefGoogle Scholar
  29. 29.
    Chen, G., Long, T., Xiong, J., Bai, Y.: Multiple random forests modelling for urban water consumption forecasting. Water Resour. Manag. 31(15), 4715–4729 (2017)CrossRefGoogle Scholar
  30. 30.
    Tiwari, M.K., Adamowski, J.F.: Medium-term urban water demand forecasting with limited data using an ensemble wavelet–bootstrap machine-learning approach. J. Water Resour. Plan. Manag. 141(2), 04014053 (2014)CrossRefGoogle Scholar
  31. 31.
    Tiwari, M.K., Adamowski, J.F.: An ensemble wavelet bootstrap machine learning approach to water demand forecasting: a case study in the city of Calgary, Canada. Urban Water J. 14(2), 185–201 (2017)CrossRefGoogle Scholar
  32. 32.
    Kang, H.: Challenges for water infrastructure asset management in South Korea. Water Policy (2019). ISSN 1366-7017 EISSN 1996-9759.  https://doi.org/10.2166/wp.2019.005CrossRefGoogle Scholar
  33. 33.
    Bughin, J., Manyika, J., Woetzel, J.: Jobs lost, jobs gained: workforce transitions in a time of automation (2017)Google Scholar
  34. 34.
    F. Malaysia: Malaysia’s Future Workforce is Not IR 4.0 Ready (2019). http://www.focusmalaysia.my/Snippets/malaysia-s-future-workforce-is-not-ir-4-0-ready. Accessed 01 October 2019

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Bashirah Fazli
    • 1
    Email author
  • Mohammad Fikry Abdullah
    • 1
  • Harlisa Zulkifli
    • 1
  • Mohd Fadhil Kasim
    • 1
  • Hin Lee Lee
    • 1
  • Md. Nasir Md. Noh
    • 1
  • Farashazillah Yahya
    • 2
  1. 1.National Hydraulic Research Institute of Malaysia (NAHRIM), Ministry of Water, Land and Natural Resources Lot 5377Seri KembanganMalaysia
  2. 2.Universiti Malaysia Sabah, Jalan UMSKota KinabaluMalaysia

Personalised recommendations