Finite and Instantaneous Screw Theory

  • Tao SunEmail author
  • Shuofei Yang
  • Binbin Lian
Part of the Springer Tracts in Mechanical Engineering book series (STME)


This chapter presents fundamental concepts, expressions, operations, and properties of FIS theory. Firstly, the finite screw in quasi-vector form and its composition operation, i.e., the screw triangle product, is derived from dual quaternion for the first time.


  1. 1.
    Sun T, Yang SF, Huang T et al (2017) A way of relating instantaneous and finite screws based on the screw triangle product. Mech Mach Theory 108:75–82CrossRefGoogle Scholar
  2. 2.
    Sun T, Yang SF, Huang T et al (2018) A finite and instantaneous screw based approach for topology design and kinematic analysis of 5-axis parallel kinematic machines. Chin J Mech Eng 31:44Google Scholar
  3. 3.
    Sun T, Yang SF (2019) An approach to formulate the Hessian matrix for dynamic control of parallel robots. IEEE-ASME Trans Mechatron 24(1):271–281CrossRefGoogle Scholar
  4. 4.
    Sun T, Song YM, Gao H et al (2015) Topology synthesis of a 1-translational and 3-rotational parallel manipulator with an articulated traveling plate. J Mech Rob Trans ASME 7(3):031015Google Scholar
  5. 5.
    Yang SF, Sun T, Huang T et al (2016) A finite screw approach to type synthesis of three-DOF translational parallel mechanisms. Mech Mach Theory 104:405–419CrossRefGoogle Scholar
  6. 6.
    Sun T, Huo XM (2018) Type synthesis of 1T2R parallel mechanisms with parasitic motions. Mech Mach Theory 128:412–428CrossRefGoogle Scholar
  7. 7.
    Sun T, Song YM, Li YG et al (2010) Workspace decomposition based dimensional synthesis of a novel hybrid reconfigurable robot. J Mech Rob Trans ASME 2(3):031009Google Scholar
  8. 8.
    Sun T, Song YM, Dong G et al (2012) Optimal design of a parallel mechanism with three rotational degrees of freedom. Rob Comput Integr Manuf 28(4):500–508CrossRefGoogle Scholar
  9. 9.
    Sun T, Liang D, Song YM (2018) Singular-perturbation-based nonlinear hybrid control of redundant parallel robot. IEEE Trans Industr Electron 65(4):3326–3336CrossRefGoogle Scholar
  10. 10.
    Sun T, Lian BB, Song YM et al (2019) Elastodynamic optimization of a 5-DoF parallel kinematic machine considering parameter uncertainty. IEEE ASME Trans Mechatron 24(1):315–325CrossRefGoogle Scholar
  11. 11.
    Ball RS (1900) A treatise on the theory of screws. Cambridge University Press, CambridgezbMATHGoogle Scholar
  12. 12.
    McCarthy JM, Soh GS (2011) Geometric design of linkages, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  13. 13.
    Hunt KH, Parkin IA (1995) Finite displacements of points, planes, and lines via screw theory. Mech Mach Theory 30(2):177–192CrossRefGoogle Scholar
  14. 14.
    Huang C, Chen CM (1995) The linear representation of the screw triangle—a unification of finite and infinitesimal kinematics. J Mech Des Trans ASME 117(4):554–560CrossRefGoogle Scholar
  15. 15.
    Hervé JM (1999) The Lie group of rigid body displacements, a fundamental tool for mechanism design. Mech Mach Theory 34(5):719–730MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ceccarelli M (2000) Screw axis defined by Giulio Mozzi in 1763 and early studies on helicoidal motion. Mech Mach Theory 35(6):761–770CrossRefGoogle Scholar
  17. 17.
    Tsai LW (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley, New YorkGoogle Scholar
  18. 18.
    Huang Z, Li QC, Ding HF (2013) Theory of parallel mechanisms. Springer, BerlinCrossRefGoogle Scholar
  19. 19.
    Meng J, Liu GF, Li ZX (2007) A geometric theory for analysis and synthesis of sub-6 DoF parallel manipulators. IEEE Trans Rob 23(4):625–649CrossRefGoogle Scholar
  20. 20.
    Murray RM, Li ZX, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca RatonzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Mechanical EngineeringTianjin UniversityTianjinChina

Personalised recommendations