Advertisement

Kinematic Calibration of Robotic Mechanism

  • Tao SunEmail author
  • Shuofei Yang
  • Binbin Lian
Chapter
  • 11 Downloads
Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

Accuracy is the primary concern in the application of robotic mechanisms because it directly affects the performance and capability of the robots [1, 2]. The main source of errors affecting the robot accuracy is due to the deviations between nominal and actual kinematic parameters. Some variation in kinematic parameters comes from the manufacturing process, primarily the machining inaccuracy of the parts. Another variation comes from the assembling process, where the position and orientation of the links and joints are not precisely matched [3, 4, 5]. The cost of robot would increase dramatically if the robot accuracy is improved by machining and assembling to higher tolerances. Alternatively, kinematic calibration [6, 7, 8, 9], the technique to improve accuracy after the robot prototype has been built, is widely applied to the robot application as it is recognized as the most economical and effective method.

References

  1. 1.
    Merlet JP (2006) Parallel robots. Springer, NetherlandszbMATHGoogle Scholar
  2. 2.
    Zhang D (2010) Parallel robotic machine tools. Springer, New YorkCrossRefGoogle Scholar
  3. 3.
    Renders JM, Rossignol E, Becquet M et al (1991) Kinematic calibration and geometrical parameter identification for robots. IEEE Trans Robot Autom 7(6):721–732CrossRefGoogle Scholar
  4. 4.
    He RB, Zhao YJ, Yang SN et al (2010) Kinematic-parameter identification for serial-robot calibration based on POE formula. IEEE Trans Rob 26(3):411–423CrossRefGoogle Scholar
  5. 5.
    Sun T, Song YM, Li YG et al (2011) Separation of comprehensive geometrical errors of a 3-DoF parallel manipulator based on Jacobian matrix and its sensitivity analysis with Monte-Carlo method. Chin J Mech Eng (English Edition) 24(3):406–413CrossRefGoogle Scholar
  6. 6.
    Roth ZS, Mooring B, Ravani B (1987) An overview of robot calibration. IEEE J Robot Autom 3(5):377–385CrossRefGoogle Scholar
  7. 7.
    Li C, Wu YQ, Löwe H et al (2016) POE-based robot kinematic calibration using axis configuration space and the adjoint error model. IEEE Trans Rob 32(5):1264–1279CrossRefGoogle Scholar
  8. 8.
    Hollerbach JM, Wampler CW (1996) The calibration index and taxonomy for robot kinematic calibration methods. Int J Robot Res 15(6):573–591CrossRefGoogle Scholar
  9. 9.
    Sun T, Lian BB, Zhang JT et al (2018) Kinematic calibration of a 2-DoF over-constrained parallel mechanism using real inverse kinematics. IEEE Access 6:67752–67761CrossRefGoogle Scholar
  10. 10.
    Sun T, Zhai YP, Song YM et al (2016) Kinematic calibration of a 3-DoF rotational parallel manipulator using laser tracker. Robot Comput Integr Manuf 41:78–91CrossRefGoogle Scholar
  11. 11.
    Zhuang H, Roth ZS, Hamano F (1992) A complete and parametrically continuous kinematic model for robot manipulators. IEEE Trans Robot Autom 8(4):451–463CrossRefGoogle Scholar
  12. 12.
    Veitschegger W, Wu CH (1986) Robot accuracy analysis based on kinematics. IEEE J Robot Autom 2(3):171–179CrossRefGoogle Scholar
  13. 13.
    Chen CG, Kong LY, Li QC et al (2018) Complete, minimal and continuous error models for the kinematic calibration of parallel manipulators based on POE formula. Mech Mach Theory 127:844–856CrossRefGoogle Scholar
  14. 14.
    Song YM, Zhang JT, Lian BB et al (2106) Kinematic calibration of a 5-DoF parallel kinematic machine. Precis Eng 45:242–261CrossRefGoogle Scholar
  15. 15.
    Jiang ZH, Zhou WG, Li H et al (2018) A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm. IEEE Trans Ind Electron 65(4):3337–3345CrossRefGoogle Scholar
  16. 16.
    Chen GL, Wang H, Lin ZQ (2014) Determination of the identifiable parameters in robot calibration based on the POE formula. IEEE Trans Rob 30(5):1066–1077CrossRefGoogle Scholar
  17. 17.
    Sun T, Wang PF, Lian BB et al (2018) Geometric accuracy design and error compensation of a 1-translational and 3-rotational parallel mechanism with articulated travelling plate. Proc Inst Mech Eng Part B J Eng Manuf 232(12):2083–2097CrossRefGoogle Scholar
  18. 18.
    Hu Y, Gao F, Zhao X et al (2018) Kinematic calibration of a 6-DoF parallel manipulator based on identifiable parameters separation. Mech Mach Theory 126:61–78CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Mechanical EngineeringTianjin UniversityTianjinChina

Personalised recommendations