Advertisement

Biosensor: A Boon for Heavy Metals Detection in Natural Water Reservoirs at Higher Altitudes

  • Shraddha Chauhan
  • Lata Sheo Bachan UpadhyayEmail author
Chapter
  • 35 Downloads
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

The gradual increase in human population and civilization has affected the nature cycle and negatively affects the environment. These cause the occupation of more land even at higher altitudes. The population growth accelerates the use of resources to maintain the comfort that eventually lead to unbalancing of atmosphere. To fulfil the need of the population new advanced and more technologies are applied in the field of agriculture to improve yields, thus increasing the use of chemicals, pesticides, synthetic fertilizers, etc. Eventually hazardous chemicals are released in the rivers and other water bodies. The natural water reservoirs present at higher altitude are the major source of water supply in every region. The contamination of these water resources causes infection in the whole chain of water distribution. Therefore, the detection at source of origin becomes a need. The identification of heavy metals contamination at higher altitude require tools that can provide easy and on-site detection as setting a sophisticated lab setup is difficult and requires heavy investment. Biosensors are the most suitable device for detecting heavy metals at higher altitude zone in an economical way. Basically, biosensor is an analytical device that comprises the biological recognition element (protein, DNA, antigen, antibody or a living organism) which shows the specific response in the occurrence of a specific analyte. This chapter summarizes the ground knowledge of biosensors and its need to detect heavy metals.

Keywords

Biosensor Higher altitude Heavy metal Whole cell biosensor 

References

  1. Babkina SS, Ulakhovich NA, Zyavkina YI (2004) Amperometric DNA biosensor for the determination of auto-antibodies using DNA interaction with Pt (II) complex. Anal Chim Acta 502(1):23–30CrossRefGoogle Scholar
  2. Bakker E, Pretsch E (2005) Potentiometric sensors for trace-level analysis. TrAC Trends Anal Chem 24(3):199–207CrossRefGoogle Scholar
  3. Bari SMI, Reis LG, Nestorova GG (2019) Calorimetric sandwich-type immunosensor for quantification of TNF-α. Biosens Bioelectron 126:82–87PubMedCrossRefGoogle Scholar
  4. Batifol FM, Boutron CF (1984) Atmospheric heavy metals in high altitude surface snows from Mont Blanc, French Alps. Atmos Environ (1967) 18(11):2507–2515CrossRefGoogle Scholar
  5. Bhatia S (2018) Introduction to pharmaceutical biotechnology, vol 2: Enzymes, proteins and bioinformatics. IOP ebooks. Bristol: IOP Publishing. ISBN: 978-0-7503-1303-2Google Scholar
  6. Bondavalli P (2019) Nanomaterials for biosensors: fundamentals and applications. MRS Bull 44:317Google Scholar
  7. Bontidean I, Berggren C, Johansson G, Csöregi E, Mattiasson B, Lloyd JR, Brown NL (1998) Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal Chem 70(19):4162–4169PubMedCrossRefGoogle Scholar
  8. Breuil P, Di Benedetto D, Poyet JP (1998) On-line analysis of copper and zinc in industrial effluents by UV-visible spectrometry (in French). Analusis 26(8):63–66CrossRefGoogle Scholar
  9. Caras S, Janata J (1980) Field effect transistor sensitive to penicillin. Anal Chem 52(12):1935–1937CrossRefGoogle Scholar
  10. Chambers JP, Arulanandam BP, Matta LL, Weis A, Valdes JJ (2008) Biosensor recognition elements. Texas Univ at San Antonio Dept of Biology Curr Issues Mol Biol 10:1–12Google Scholar
  11. Chaubey A, Malhotra B (2002) Mediated biosensors. Biosens Bioelectron 17(6–7):441–456PubMedCrossRefGoogle Scholar
  12. Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csöregi E, Johansson G, Mattiasson B (1999) Whole cell-and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387(3):235–244CrossRefGoogle Scholar
  13. Corcoran CA, Rechnitz GA (1985) Cell-based biosensors. Trends Biotechnol 3(4):92–96CrossRefGoogle Scholar
  14. D’Orazio P (2003) Biosensors in clinical chemistry. Clin Chim Acta 334(1–2):41–69PubMedCrossRefGoogle Scholar
  15. D’souza SF (2001) Microbial biosensors. Biosens Bioelectron 16(6):337–353PubMedCrossRefGoogle Scholar
  16. Danielsson B, Mosbach K (1986) Theory and application of calorimetric sensors. In: Turner PF, Karube I, Wilson GS (eds) Biosensors: fundamentals and applications. Oxford University Press, Oxford, pp 575–595Google Scholar
  17. Danielsson B, Mattiasson B, Mosbach K (1981) Enzyme thermistor devices and their analytical applications. Appl Biochem Bioeng 3:97–143. ElsevierCrossRefGoogle Scholar
  18. Dennison MJ, Turner APF (1995) Biosensors for environmental monitoring. Biotechnol Adv 13:1–12PubMedCrossRefGoogle Scholar
  19. Eggins BR (2008) Chemical sensors and biosensors, vol 28. Wiley, ChichesterGoogle Scholar
  20. Fennouh S, Casimiri V, Geloso-Meyer A, Burstein C (1998) Kinetic study of heavy metal salt effects on the activity of L-lactate dehydrogenase in solution or immobilized on an oxygen electrode. Biosens Bioelectron 13(7–8):903–909PubMedCrossRefGoogle Scholar
  21. Gayet JC, Haouz A, Geloso-Meyer A, Burstein C (1993) Detection of heavy metal salts with biosensors built with an oxygen electrode coupled to various immobilized oxidases and dehydrogenases. Biosens Bioelectron 8(3–4):177–183CrossRefGoogle Scholar
  22. Ghourchian H, Moulaie Rad A, Elyasvandi H (2004) A conductometric urea biosensor by direct immobilization of urease on Pt electrode. Iran J Chem Chem Eng 23:55–63Google Scholar
  23. Gopal B, Chauhan M, Zutshi DP (2002) High altitude lakes of Ladakh: changes since the Yale North India expedition. Int Ver Theor Angew Limnol Verh 28(2):519–523Google Scholar
  24. Graziella LT (2011) Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem 1:1Google Scholar
  25. Guilbault GG (1984) Analytical uses of immobilized enzymes, vol 2. Marcel Dekker, New YorkGoogle Scholar
  26. Habermüller K, Mosbach M, Schuhmann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresenius J Anal Chem 366(6–7):560–568PubMedGoogle Scholar
  27. Hafeman DG, Parce JW, McConnell HM (1988) Light-addressable potentiometric sensor for biochemical systems. Science 240(4856):1182–1185PubMedCrossRefGoogle Scholar
  28. Han S, Zhu M, Yuan Z, Li X (2001) A methylene blue-mediated enzyme electrode for the determination of trace mercury (II), mercury (I), methylmercury, and mercury–glutathione complex. Biosens Bioelectron 16(1–2):9–16PubMedCrossRefGoogle Scholar
  29. Harding S (ed) (2009) Biotechnology & genetic engineering reviews, vol 25. Nottingham University Press, NottinghamGoogle Scholar
  30. Haritash AK, Gaur S, Garg S (2016) Assessment of water quality and suitability analysis of river ganga in Rishikesh, India. Appl Water Sci 6(4):383–392CrossRefGoogle Scholar
  31. Ilangovan R, Daniel D, Krastanov A, Zachariah C, Elizabeth R (2006) Enzyme based biosensor for heavy metal ions determination. Biotechnol Biotechnol Equip 20:184–189CrossRefGoogle Scholar
  32. Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP (2000) A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15(11–12):549–578PubMedCrossRefGoogle Scholar
  33. Kloock JP, Moreno L, Bratov A, Huachupoma S, Xu J, Wagner T, Yoshinobu T, Ermolenko YE, Vlasov YG, Schöning MJ (2006) PLD-prepared cadmium sensors based on chalcogenide glasses—ISFET, LAPS and μISE semiconductor structures. Sensors Actuators B Chem 118(1–2):149–155CrossRefGoogle Scholar
  34. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125(22):6642–6643PubMedCrossRefGoogle Scholar
  35. Malitesta C, Guascito MR (2005) Heavy metal determination by biosensors based on enzyme immobilised by electropolymerisation. Biosens Bioelectron 20(8):1643–1647PubMedCrossRefGoogle Scholar
  36. May LM, Russell DA (2003) Novel determination of cadmium ions using an enzyme self-assembled monolayer with surface plasmon resonance. Anal Chim Acta 500(1–2):119–125CrossRefGoogle Scholar
  37. Mourzina Y, Yoshinobu T, Schubert J, Lüth H, Iwasaki H, Schöning MJ (2001) Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition. Sensors Actuators B Chem 80(2):136–140CrossRefGoogle Scholar
  38. Mulchandani A, Bassi AS (1995) Principles and applications of biosensors for bioprocess monitoring and control. Crit Rev Biotechnol 15(2):105–124PubMedCrossRefGoogle Scholar
  39. Mulchandani A, Rogers KR (eds) (1998) Enzyme and microbial biosensors: techniques and protocols. Humana Press, Totowa, pp 203–207Google Scholar
  40. Newman JD, Turner AP (1992) Biosensors: principles and practice, vol 27. Portland, London, pp 147–159Google Scholar
  41. Oliveira SCB, Corduneanu O, Oliveira-Brett AM (2008) In situ evaluation of heavy metal–DNA interactions using an electrochemical DNA biosensor. Bioelectrochemistry 72(1):53–58PubMedCrossRefGoogle Scholar
  42. Pal P, Bhattacharyay D, Mukhopadhyay A, Sarkar P (2009) The detection of mercury, cadium, and arsenic by the deactivation of urease on rhodinized carbon. Environ Eng Sci 26(1):25–32CrossRefGoogle Scholar
  43. Pearson JE, Gill A, Vadgama P (2000) Analytical aspects of biosensors. Ann Clin Biochem 37(2):119–145PubMedCrossRefGoogle Scholar
  44. Peavy HS, Rowe DR, Tchobanoglous G (1988) Environmental engineering. McGraw Hill, New YorkGoogle Scholar
  45. Poghossian A, Yoshinobu T, Simonis A, Ecken H, Lüth H, Schöning MJ (2001) Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? Sensors Actuators B Chem 78(1–3):237–242CrossRefGoogle Scholar
  46. Prasad S, Zhang X, Yang M, Ozkan CS, Ozkan M (2004) Neurons as sensors: individual and cascaded chemical sensing. Biosens Bioelectron 19(12):1599–1610PubMedCrossRefGoogle Scholar
  47. Rai UN, Prasad D, Verma S, Upadhyay AK, Singh NK (2012) Biomonitoring of metals in ganga water at different ghats of Haridwar: implications of constructed wetland for sewage detoxification. Bull Environ Contam Toxicol 89(4):805–810PubMedCrossRefGoogle Scholar
  48. Riedel K, Kunze G, König A (2002) Microbial sensors on a respiratory basis for wastewater monitoring. In: History and trends in bioprocessing and biotransformation. Springer, Berlin, pp 81–118CrossRefGoogle Scholar
  49. Rodriguez-Mozaz S, Marco MP, De Alda ML, Barceló D (2004) Biosensors for environmental applications: future development trends. Pure Appl Chem 76(4):723–752CrossRefGoogle Scholar
  50. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3):489–511PubMedCrossRefGoogle Scholar
  51. Satoh I (1991) An apoenzyme thermistor microanalysis for zinc (II) ions with use of an immobilized alkaline phosphatase reactor in a flow system. Biosens Bioelectron 6(4):375–379CrossRefGoogle Scholar
  52. Scheller F, Schubert F (1991) Biosensors, vol 11. Elsevier, AmsterdamGoogle Scholar
  53. Shekhovtsova TN, Muginova SV, Bagirova NA (1997) Determination of organomercury compounds using immobilized peroxidase. Anal Chim Acta 344(1–2):145–151CrossRefGoogle Scholar
  54. Soldatkin OO, Kucherenko IS, Pyeshkova VM, Kukla AL, Jaffrezic-Renault N, El’Skaya AV, Dzyadevych SV, Soldatkin AP (2012) Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry 83:25–30PubMedCrossRefGoogle Scholar
  55. Spink C, Wadsö I (1976) Calorimetry as an analytical tool in biochemistry and biology. Methods Biochem Anal 23(1):1–160PubMedGoogle Scholar
  56. Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151(1):1–8PubMedCrossRefGoogle Scholar
  57. Stein B, George M, Gaub HE, Parak WJ (2004) Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS). Sensors Actuators B Chem 98(2–3):299–304CrossRefGoogle Scholar
  58. Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13(9):931–938PubMedCrossRefGoogle Scholar
  59. Tencaliec AM, Laschi S, Magearu V, Mascini M (2006) A comparison study between a disposable electrochemical DNA biosensor and a Vibrio fischeri-based luminescent sensor for the detection of toxicants in water samples. Talanta 69(2):365–369PubMedCrossRefGoogle Scholar
  60. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Anal Lett 34(5):635–659CrossRefGoogle Scholar
  61. Thompson RB, Maliwal BP, Feliccia VL, Fierke CA, McCall K (1998) Determination of picomolar concentrations of metal ions using fluorescence anisotropy: biosensing with a “reagentless” enzyme transducer. Anal Chem 70(22):4717–4723PubMedCrossRefGoogle Scholar
  62. Turdean GL (2011) Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem 2011:1CrossRefGoogle Scholar
  63. Upadhyay LSB, Verma N (2015) Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological fluids. Biosens Bioelectron 68:611–616PubMedCrossRefGoogle Scholar
  64. Upadhyay LSB, Kumar N, Chauhan S (2018) Minireview: whole-cell, nucleotide, and enzyme inhibition-based biosensors for the determination of arsenic. Anal Lett 51(9):1265–1279CrossRefGoogle Scholar
  65. vel Krawczyk TK, Moszczyńska M, Trojanowicz M (2000) Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor. Biosens Bioelectron 15(11–12):681–691CrossRefGoogle Scholar
  66. Velasco-Garcia MN, Mottram T (2003) Biosensor technology addressing agricultural problems. Biosyst Eng 84(1):1–12CrossRefGoogle Scholar
  67. Verma N, Malaku ET (2001) Studies on the development of disposable biosensor for monitoring malathion pesticide residues. Biochem Environ Agric:265–269Google Scholar
  68. Verma N, Singh M (2005) Biosensors for heavy metals. Biometals 18(2):121–129PubMedCrossRefGoogle Scholar
  69. Volotovsky V, Nam YJ, Kim N (1997) Urease-based biosensor for mercuric ions determination. Sensors Actuators B Chem 42(3):233–237CrossRefGoogle Scholar
  70. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825PubMedCrossRefGoogle Scholar
  71. Weltin A, Kieninger J, Urban GA (2016) Microfabricated, amperometric, enzyme-based biosensors for in vivo applications. Anal Bioanal Chem 408(17):4503–4521PubMedPubMedCentralCrossRefGoogle Scholar
  72. Wong EL, Chow E, Gooding JJ (2007) The electrochemical detection of cadmium using surface-immobilized DNA. Electrochem Commun 9(4):845–849CrossRefGoogle Scholar
  73. Xu G, Ye X, Qin L, Xu Y, Li Y, Li R, Wang P (2005) Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens Bioelectron 20(9):1757–1763PubMedCrossRefGoogle Scholar
  74. Yamasaki A, Cunha MÂS, Oliveira JA, Duarte AC, Gomes MTS (2004) Assessment of copper toxicity using an acoustic wave sensor. Biosens Bioelectron 19(10):1203–1208PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of BiotechnologyNational Institute of Technology RaipurRaipurIndia

Personalised recommendations