Advertisement

Microbiological Advances in Bioactives from High Altitude

  • Suresh Chandra Phulara
  • Nazia Ahmad
  • Bidyut Mazumdar
  • Vikrant Singh Rajput
Chapter
  • 35 Downloads
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

Owing to high altitude and extreme environmental conditions, Himalayas represents one of the biodiversity hotspot in India and home to several plants and microbial species. Thus, the plants and microbes present in these regions exhibit characteristic adaptations. The plants of high altitude Himalayan region are rich in varied secondary metabolites possessing several pharmacological activities. In this chapter, we focused on the antimicrobial and anticancer activities of the secondary metabolites present in the high-altitude plants and microbes, respectively, from the Himalayas. The ethnopharmacology of several plant species have been discussed which have been reported for antimicrobial activity by their essential oils. The major constituents of the essential oils that are responsible for such properties have also been explored. Later, the specific classes of secondary metabolites have been examined for their anticancer potential. However, the recognition of tremendous medicinal applications of Himalayan plants has resulted into their heavy exploitation in the past few decades. Due to this, several plant species like the Himalayan Yew have become endangered. To reduce their over exploitation and to obtain high-altitude bioactives in a sustainable manner, microbial production of such compounds have been investigated in past two decades. In the last section, we discuss about the biosynthesis of one of the largest class of bioactives i.e. terpenoids from microbial sources. Overall, the present chapter boasts the antimicrobial and anticancer potential of the bioactives from high-altitude and their sustainable production approach through microbial system.

Keywords

Antimicrobials Higher altitude bioactives Ethnopharmacology Himalaya Biodiversity 

References

  1. Acharya J (2016) Taxonomic studies on Caprifoliaceae Juss. in India. Thesis submitted for the degree of Doctor of Philosophy in Science (Botany), The University of Burdwan.Google Scholar
  2. Agarwal R, Pant AK, Prakash O (2012) Chemical composition and biological activities of essential oils of Cinnamomum tamala, Cinnamomum zeylanicum and Cinnamomum camphora growing in Uttarakhand. In: Srivastava MM, Khemani LD, Srivastava S (eds) Chemistry of phytopotentials: health, energy and environmental perspectives. Springer, Berlin, pp 87–92, 98CrossRefGoogle Scholar
  3. Ajikumar PK, Tyo K, Carlsen S et al (2008) Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm 5:167–190PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ajikumar PK, Xiao W-H, Tyo KEJ et al (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74.  https://doi.org/10.1126/science.1191652 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Al-Snafi AE (2016) Medical importance of Cupressus sempervirens-a review. IOSR J Pharm 6(6):66–76Google Scholar
  6. Ansari S, Jain P, Tyagi RP, Joshi BC, Barar FS (1983) Phytochemical and pharmacological studies of the aerial parts of Eupatorium adenophorum L. Herba Polon 29(2):93–96Google Scholar
  7. Aslan E, Guler C, Adem S (2016) In vitro effects of some flavonoids and phenolic acids on human pyruvate kinase isoenzyme M2. J Enzyme Inhib Med Chem 31(2):314–317PubMedCrossRefPubMedCentralGoogle Scholar
  8. Aziz S, Habib-ur-Rehman, Irshad M et al (2010) Phytotoxic and antifungal activities of essential oils of Thymus serpyllum grown in the state of Jammu and Kashmir. J Essent Oil Bear Plants 13:224–229CrossRefGoogle Scholar
  9. Bai N, Lai CS, He K et al (2006) Sesquiterpene lactones from Inula britannica and their cytotoxic and apoptotic effects on human cancer cell lines. J Nat Prod 69(4):531–535PubMedCrossRefPubMedCentralGoogle Scholar
  10. Baindara P, Gautam A, Raghava GPS, Korpole S (2017) Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci Rep 7:46541PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bais S, Gill NS, Rana N, Shandil S (2014) A phytopharmacological review on a medicinal plant: Juniperus communis. Int Sch Res Notices 2014:634723, 6pPubMedPubMedCentralGoogle Scholar
  12. Balami NP (2004) Ethnomedicinal uses of plants among the Newar community of Pharping village of Kathmandu district, Nepal. Tribhuvan Univ J 24:13–19CrossRefGoogle Scholar
  13. Ballabh B, Chaurasia OP (2007) Traditional medicinal plants of cold desert Ladakh—used in treatment of cold, cough and fever. J Ethnopharmacol 112:341–349PubMedCrossRefPubMedCentralGoogle Scholar
  14. Ballabh B, Chaurasia OP, Ahmed Z, Singh SB (2008) Traditional medicinal plants of colddesert Ladakh—used against kidney and urinary disorders. J Ethnopharmacol 118:331–339PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bano A, Ahmad M, Zafar M et al (2014) Ethnomedicinal knowledge of the most commonly used plants from Deosai Plateau, Western Himalayas, Gilgit Baltistan. Pakistan J Ethnopharmacol 15:1046–1052CrossRefGoogle Scholar
  16. Barceloux DG (2009) Cinnamon (Cinnamomum species). Dis Mon 55(6):327PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bartel JA (1994) Cupressaceae Cypress family. J Arizona Nevada Acad Sci 1:195–200Google Scholar
  18. Batra P, Sharma AK (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 3(6):439–459PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bhattacharyya A (1991) Ethnobotanical observations in the Ladakh Region of northern Jammu and Kashmir state, India. Econ Bot 45:305–308CrossRefGoogle Scholar
  20. Bisht VK, Purohit V (2010) Medicinal and aromatic plants diversity of Asteraceae in Uttarakhand. Nat Sci 8(3):121–128Google Scholar
  21. Bisht DS, Padalia RC, Singh L et al (2010) Constituents and antimicrobial activity of the essential oils of six Himalayan Nepeta species. J Serbian Chem Soc 75:739–747CrossRefGoogle Scholar
  22. Bisht D, Pal A, Chanitiya CS et al (2011) Terpenoid composition and antifungal activity of three commercially important essential oils against Aspergillus flavus and Aspergillus niger. Nat Prod Res 25:1993–1998PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bisht VK, Rana CS, Negi JS et al (2012) Lamiaceous ethno-medico-botanicals in Uttarakhand Himalaya, India. J Med Plants Res 6:4281–4291CrossRefGoogle Scholar
  24. Bloch K, Chaykin S, Phillips AH, De Waard A (1959) Mevalonic acid pyrophosphate and isopentenyl pyrophosphate. J Biol Chem 234:2595–2604PubMedPubMedCentralGoogle Scholar
  25. Boghigian BA, Armando J, Salas D, Pfeifer BA (2012) Computational identification of gene over-expression targets for metabolic engineering of taxadiene production. Appl Microbiol Biotechnol 93:2063–2073.  https://doi.org/10.1007/s00253-011-3725-1 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Bokinsky G, Peralta-Yahya PP, George A et al (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108:19949–19954.  https://doi.org/10.1073/pnas.1106958108 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bora KS, Sharma A (2011) The genus Artemisia: a comprehensive review. Pharm Biol 49:101–109PubMedCrossRefPubMedCentralGoogle Scholar
  28. Botlagunta M, Kollapalli B, Kakarla L et al (2016) In vitro anti-cancer activity of doxorubicin against human RNA helicase, DDX3. Bioinformation 12:347–353PubMedPubMedCentralCrossRefGoogle Scholar
  29. Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley, WeinheimCrossRefGoogle Scholar
  30. Bruneton J (1999) Pharmacognosy, phytochemistry, medicinal plants, 2nd edn. Lavoisier Publications, ParisGoogle Scholar
  31. Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J (2010) Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr 92:141–153PubMedCrossRefPubMedCentralGoogle Scholar
  32. Bueno JM, Sáez-Plaza P, Ramos-Escudero F, Jiménez AM, Fett R, Asuero AG (2012) Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Crit Rev Anal Chem 42(2):126–115CrossRefGoogle Scholar
  33. Burke YD, Stark MJ, Roach SL et al (1997) Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids 32:151–156PubMedCrossRefPubMedCentralGoogle Scholar
  34. Čapková K, Hauer T, Řeháková K, Doležal J (2016) Some like it high! Phylogenetic diversity of high-elevation cyanobacterial community from biological soil crusts of Western Himalaya. Microb Ecol 71:113–123.  https://doi.org/10.1007/s00248-015-0694-4 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Carlsen S, Ajikumar PK, Formenti LR et al (2013) Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:5753–5769.  https://doi.org/10.1007/s00253-013-4877-y CrossRefPubMedPubMedCentralGoogle Scholar
  36. Carović-StanKo K, PeteK M, Martina G et al (2016) Medicinal plants of the family Lamiaceaeas functional foods–a review. Czech J Food Sci 34(5):377CrossRefGoogle Scholar
  37. Chahar MK, Sharma N, Dobhal MP, Joshi YC (2011) Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev 5:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  38. Chakravarty AK, Mazumder T, Chatterjee SN (2011) Anti-inflammatory potential of ethanolic leaf extract of Eupatorium adenophorum Spreng. Through alteration in production of TNF-α, ROS and expression of certain genes. Evid Based Complement Alternat Med 2011:471074PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chandran SS, Kealey JT, Reeves CD (2011) Microbial production of isoprenoids. Process Biochem 46:1703–1710.  https://doi.org/10.1016/j.procbio.2011.05.012 CrossRefGoogle Scholar
  40. Chang WS, Lee YJ, Lu FJ, Chiang HC (1993) Inhibitory effects of flavonoids on xanthine oxidase. Anticancer Res 13:2165–2170PubMedPubMedCentralGoogle Scholar
  41. Chen AH, Silver PA (2012) Designing biological compartmentalization. Trends Cell Biol 22:662–670.  https://doi.org/10.1016/j.tcb.2012.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Chen C, Yu R, Owuor ED, Kong AN (2000) Activation of antioxidant response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res 23:605–612PubMedCrossRefPubMedCentralGoogle Scholar
  43. Chen YN, Chen JC, Yin SC et al (2002) Effector mechanisms of norcantharidin-induced mitotic arrest and apoptosis in human hepatoma cells. Int J Cancer 100:158–165PubMedCrossRefPubMedCentralGoogle Scholar
  44. Chen H, Sun B, Wang S et al (2010a) Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-kappaB. J Cancer Res Clin Oncol 897-903(a):136Google Scholar
  45. Chen W, Leiter A, Yin D et al (2010b) Cucurbitacin B inhibits growth, arrests the cell cycle, and potentiates antiproliferative efficacy of cisplatin in cutaneous squamous cell carcinoma cell lines. Int J Oncol 737-43(b):37Google Scholar
  46. Chin C, Yen KH, Mian VJ (2010) Antioxidant activities of traditional medicinal plants from Lauraceae family in Sarawak. In: 2010 International conference on science and social research (CSSR 2010). IEEE, pp 783–785Google Scholar
  47. Choedon T, Kumar V (2012) Medicinal plants used in the practice of Tibetan medicine. Rec Prog Med Plants 34:385–402Google Scholar
  48. Chou CC, Pan SL, Teng CM et al (2003) Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatomaHep3B cells. Eur J Pharm Sci 19:403–412PubMedCrossRefPubMedCentralGoogle Scholar
  49. Christensen LP (2010) Bioactivity of polyacetylenes in food plants. In: Watson RR, Preedy VR (eds) Bioactive food in promoting health: Fruits and vegetables. Academic, London, pp 285–306CrossRefGoogle Scholar
  50. Clarke CB (1880) Caprifoliaceae. In: Hooker JD (ed) Flora of British India, vol 3. L. Reeve and Co., London, pp 1–5Google Scholar
  51. Clegg RJ, Middleton B, Bell GD et al (1982) The mechanism of cyclic monoterpene inhibition of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase in vivo in the rat. J Biol Chem 257(5):2294–2299PubMedPubMedCentralGoogle Scholar
  52. Comai S, Dall’Acqua S, Grillo A et al (2010) Essential oil of Linderaneesiana fruit: chemical analysis and its potential use in topical applications. Fitoterapia 81:11–16PubMedCrossRefPubMedCentralGoogle Scholar
  53. Croteau R, Ketchum REB, Long RM et al (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97.  https://doi.org/10.1007/s11101-005-3748-2 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Das SN, Patro VJ, Dinda SC (2012) A review: ethnobotanical survey of genus Leucas. Pharmacogn Rev 6:100–106PubMedPubMedCentralCrossRefGoogle Scholar
  55. Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:21.  https://doi.org/10.3389/fbioe.2014.00021 CrossRefPubMedPubMedCentralGoogle Scholar
  56. DeBono A, Capuano B, Scammells PJ (2015) Progress toward the development of noscapine and derivatives as anticancer agents. J Med Chem 5:5699–5727CrossRefGoogle Scholar
  57. DeJong JHM, Liu Y, Bollon AP et al (2006) Genetic engineering of Taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224.  https://doi.org/10.1002/bit.20694 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Dhawan BN (1997) Biodiversity–a valuable resource for new molecules. Himalayan biodiversity: action plan. Gyanodaya Prakashan, Nainital, pp 111–114Google Scholar
  59. Dugar D, Stephanopoulos G (2011) Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol 29:1074–1078.  https://doi.org/10.1038/nbt.2055 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Durr IF, Rudney H (1960) The reduction of β-hydroxy-β-methylglutaryl coenzyme A to mevalonic acid. J Biol Chem 235:2572–2578PubMedPubMedCentralGoogle Scholar
  61. Dutt HC, Bhagat N, Pandita S (2015) Oral traditional knowledge on medicinal plants in jeopardy among Gaddi shepherds in hills of northwestern Himalaya, J & K, India. J Ethnopharmacol 168:337–348PubMedCrossRefPubMedCentralGoogle Scholar
  62. Eisenreich W, Menhard B, Hylands PJ et al (1996) Studies on the biosynthesis of Taxol: the taxane carbon skeleton is not of mevalonoid origin. Proc Natl Acad Sci U S A 93:6431–6436PubMedPubMedCentralCrossRefGoogle Scholar
  63. Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 10:201–206.  https://doi.org/10.1016/J.YMBEN.2008.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ertürk Ö, Demirbag Z (2003) ScorzonaremollisBieb (compositae) bitkisininantimikrobiyalaktivitesi. Ekolojiçevredergisi 12(47):27–31Google Scholar
  65. Fan Y, Patima A, Chen Y et al (2015) Cytotoxic effects of beta-carboline alkaloids on human gastric cancer SGC-7901 cells. Int J Clin Exp Med 8:12977–12982PubMedPubMedCentralGoogle Scholar
  66. Farjon A (2013) Pinus roxburghii. IUCN Red List Threat species 2013 e.T42412A2978347Google Scholar
  67. Ferguson JJ, Rudney H (1959) The Biosynthesis of β-Hydroxy-β-methylglutaryl Coenzyme A in Yeast: I. Identification and purification of the hydroxymethylglutaryl coenzyme-condensing enzyme. J Biol Chem 234:1072–1075PubMedPubMedCentralGoogle Scholar
  68. Foo JL, Leong SSJ (2013) Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules. Biotechnol Biofuels 6:81.  https://doi.org/10.1186/1754-6834-6-81 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Frankel AE, Kreitman RJ, Sausville EA (2000) Targeted toxins. Clin Cancer Res 6:326–334PubMedPubMedCentralGoogle Scholar
  70. Funk VA, Bayer RJ, Keeley S et al (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biol Skr 55:343–374Google Scholar
  71. Gairola S, Sharma CM, Rana CS et al (2010) Phytodiversity (Angiosperms and Gymnosperms) in Mandal-Chopta Forest of Garhwal Himalaya, Uttarakhand, India. Nat Sci 8(1):1–7Google Scholar
  72. Gapter L, Wang Z, Glinski J et al (2005) Induction of apoptosis in prostate cancer cells by pachymic acid from Poriacocos. Biochem Biophys Res Commun 332:1153–1161PubMedCrossRefPubMedCentralGoogle Scholar
  73. George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015a) Isoprenoid drugs, biofuels, and chemicals-artemisinin, farnesene, and beyond. Adv Biochem Eng Biotechnol 148:355–389PubMedPubMedCentralGoogle Scholar
  74. George KW, Thompson MG, Kang A et al (2015b) Metabolic engineering for the high-yield production of isoprenoid-based C 5 alcohols in E. coli. Sci Rep 5:11128.  https://doi.org/10.1038/srep11128 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ghildiyal JC, Juyal P, Sadana G (2014) Indigenous uses of plants in different women ailments in Garhwal region. Indian J Pharm Biol Res 2:39–44Google Scholar
  77. Guleria S, Kumar A, Tiku AK (2008) Chemical composition and fungitoxic activity of essential oil of Thujaorientalis L. grown in the north-western Himalaya. Z Naturforsch C 63:211–214PubMedCrossRefPubMedCentralGoogle Scholar
  78. Gupta P, Phulara SC (2015) Metabolic engineering for isoprenoid-based biofuel production. J Appl Microbiol 119:605–619.  https://doi.org/10.1111/jam.12871 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Halfmann C, Gu L, Gibbons W, Zhou R (2014a) Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Appl Microbiol Biotechnol 98:9869–9877.  https://doi.org/10.1007/s00253-014-6118-4 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Halfmann C, Gu L, Zhou R (2014b) Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem 16:3175–3185.  https://doi.org/10.1039/c3gc42591f CrossRefGoogle Scholar
  81. Hamidpour R, Hamidpour S, Hamidpour M, Shahlari M (2013) Camphor (Cinnamomumcamphora),a traditional remedy with the history of treating several diseases. Int J Case Rep Images 4:86–89CrossRefGoogle Scholar
  82. Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuel 24:267–273.  https://doi.org/10.1021/ef900799c CrossRefGoogle Scholar
  83. Hazlett DL, Sawyer NW (1998) Distribution of alkaloid rich plant species in short grass steppe vegetation. Conserv Biol 12:1260–1268CrossRefGoogle Scholar
  84. He L, Mo H, Hadisusilo S et al (1997) Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J Nutr 127:668–674PubMedCrossRefPubMedCentralGoogle Scholar
  85. Helling H, Popjak G (1961) Studies on the biosynthesis of cholesterol: XIII . phosphomevalonic kinase from liver. J Lipid Res 2:235–243Google Scholar
  86. Herz S, Wungsintaweekul J, Schuhr CA et al (2000) Biosynthesis of terpenoids : YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2,4-cyclodiphosphate. Proc Natl Acad Sci U S A 97:2486–2490PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hou J, Wang D, Zhang R et al (2006) Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 2008(14):5519–5530Google Scholar
  88. Huan SK, Lee HH, Liu DZ et al (2006) Cantharidin-induced cytotoxicity and cyclooxygenase 2 expression in human bladder carcinoma cell line. Toxicology 223:136–143PubMedCrossRefPubMedCentralGoogle Scholar
  89. Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of Taxol. Bioorg Med Chem 9:2237–2242.  https://doi.org/10.1016/S0968-0896(01)00072-4 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Huang YT, Huang DM, Chueh SC et al (2006) Alisol B acetate, a triterpene from Alismatisrhizoma, induces Bax nuclear translocation and apoptosis in human hormone-resistant prostate cancer PC-3 cells. Cancer Lett 231:270–278PubMedCrossRefPubMedCentralGoogle Scholar
  91. Huang M, Lu J-J, Huang M-Q et al (2012) Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 21:1801–1818.  https://doi.org/10.1517/13543784.2012.727395 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Huh JE, Kang KS, Chae C et al (2004) Roles of p38 and JNK mitogen-activated protein kinase pathways during cantharidin-induced apoptosis in U937 cells. Biochem Pharmacol 67:1811–1818PubMedCrossRefPubMedCentralGoogle Scholar
  93. Hunter WN (2007) The Non-mevalonate Pathway of Isoprenoid Precursor Bioynthesis. J Biol Chem 282:21573–21577.  https://doi.org/10.1074/jbc.R700005200 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Ikezoe T, Yang Y, Bandobashi K et al (2005) Oridonin, a diterpenoid purified from Rabdosiarubescens, inhibits the proliferation of cells from lymphoid malignancies in association with blockade of the NF-kappa B signal pathways. Mol Cancer Ther 4:578–586PubMedCrossRefPubMedCentralGoogle Scholar
  95. Issac O (1989) Recent progress in chamomile research-medicines of plant origin in modern therapy. Czeco-Slovakia, Prague, p 7Google Scholar
  96. Ito T, Kawata S, Tamura S et al (1996) Suppression of human pancreatic cancer growth in BALB/c nude mice by manumycin, a farnesyl: proteintransferase inhibitor. Jpn J Cancer Res 87:113–116PubMedPubMedCentralCrossRefGoogle Scholar
  97. Iwaki T, Haranoh K, Inoue N et al (2006) Expression of foreign type I ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) stimulates photosynthesis in cyanobacterium Synechococcus PCC7942 cells. Photosynth Res 88:287–297.  https://doi.org/10.1007/s11120-006-9048-x CrossRefPubMedPubMedCentralGoogle Scholar
  98. Jahanafrooz Z, Motamed N, Bakhshandeh B (2017) Effects of miR-21 downregulation and silibinin treatment in breast cancer cell lines. Cytotechnology 69(4):667–680PubMedPubMedCentralCrossRefGoogle Scholar
  99. Jaitak V, Singh B, Kaul VK (2008) Variability of volatile constituents in Artemisia maratima in western Himalaya. Nat Prod Res 22:565–568PubMedCrossRefPubMedCentralGoogle Scholar
  100. Joshi RK (2013) Antifungal activity of essential oil of Tanacetum longifolium growing wild in Uttarakhand, India. J Biol Act Prod Nat 3:97–100Google Scholar
  101. Joshi RK, Bisht BS (2012) Antibacterial activity of volatile oil of Tanacetum longifolium from Western Himalayan region of Uttarakhand, India. J Nat Prod Plant Resour 2:721–724Google Scholar
  102. Joshi SC, Padalia RC, Bisht DS, Mathela CS (2009) Terpenoid diversity in the leaf essential oils of Himalayan Lauraceae species. Chem Biodivers 6(9):1364–1373PubMedCrossRefPubMedCentralGoogle Scholar
  103. Joshi RK, Padalia RC, Mathela CS et al (2010a) Phenyl alkynes rich essential oil of Artemisia cappillaris. Nat Prod Commun 5:815–816PubMedPubMedCentralGoogle Scholar
  104. Joshi SC, Verma AR, Mathela CS (2010b) Antioxidant and antibacterial activities of the leaf essential oils of Himalayan Lauraceae species. Food Chem Toxicol 48:37–40PubMedCrossRefPubMedCentralGoogle Scholar
  105. Kaleem S, Siddiqui S, Siddiqui HH et al (2016) Eupalitin induces apoptosis in prostate carcinoma cells through ROS generation and increase of caspase-3 activity. Cell Biol Int 40(2):196–203PubMedCrossRefPubMedCentralGoogle Scholar
  106. Kampan NC, Madondo MT et al (2015) Paclitaxel and its evolving role in the management of ovarian cancer. Biomed Res Int 2015:413076, 21pPubMedPubMedCentralCrossRefGoogle Scholar
  107. Kang M-K, Eom J-H, Kim Y et al (2014) Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnol Lett 36:2069–2077.  https://doi.org/10.1007/s10529-014-1578-2 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Katsuki H, Bloch K (1967) Studies on the biosynthesis of ergosterol in yeast: formation of methylated intermediates. J Biol Chem 242:222–227PubMedPubMedCentralGoogle Scholar
  109. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76PubMedCrossRefPubMedCentralGoogle Scholar
  110. Khan M, Kumar S, Hamal IA (2009) Medicinal plants of Sewa River catchment area in the northwest Himalaya and its implication for conservation. Ethnobot Lealf 13:1113–1139Google Scholar
  111. Khan AA, Ali F, Ihsan M et al (2015) Ethnobotanical study of the medicinal plants of Tehsil Charbagh, district Swat, Khyber Pakhtunkhwa, Pakistan. Am Eurasian J Agric Environ Sci 15:1464–1474Google Scholar
  112. Kim SR, Park MJ, Lee MK et al (2002) Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radic Biol Med 32(7):596–604PubMedCrossRefPubMedCentralGoogle Scholar
  113. Kim S, Hwang E, Yi SS, Song KD, Lee H, Heo T, Park S, Jung YJ, Jun HS (2017) Sea Buckthorn leaf extract inhibits glioma cell growth by reducing reactive oxygen species and promoting apoptosis. Appl Biochem Biotechnol 182(4):1663–1674PubMedCrossRefPubMedCentralGoogle Scholar
  114. Kobayashi T, Song QH, Hong T et al (2002) Preventative effects of the flowers of Inula britannica on autoimmune diabetes in C57BL/KsJ mice induced by multiple low doses of streptozotocin. Phytother Res 16(4):377–382PubMedCrossRefPubMedCentralGoogle Scholar
  115. Kumar S, Kumari R (2019) Cinnamomum: review article of essential oil compounds, ethnobotany, antifungal and antibacterial effects. Open Access J Sci 3(1):13–16Google Scholar
  116. Kumar M, Rawat P, Rahuja N et al (2009) Antihyperglycemic activity of phenylpropanoyl esters of catechol glycoside and its dimers from Dodecadenia grandiflora. Phytochemistry 70(11–12):1448–1455PubMedCrossRefPubMedCentralGoogle Scholar
  117. Kumar M, Rawat P, Khan MF et al (2010) Phenolic glycosides from Dodecadenia grandiflora and their glucose-6-phosphatase inhibitory activity. Fitoterapia 81(6):475–479PubMedCrossRefPubMedCentralGoogle Scholar
  118. Kumar A, Varshney VK, al PR (2013) In vitro antioxidant, antifungal and antibacterial activities of essential oil of Morinalongifolia Wall. leaves. J Biol Act Prod Nat 3:183–193Google Scholar
  119. Kumar D, Sharma P, Singh H et al (2017) The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Adv 7(59):36977CrossRefGoogle Scholar
  120. Kumari P, Joshi GC, Tewari LM (2012) Indigenous uses of threatened ethno-medicinal plants used to cure different diseases by ethnic people of Almora district of western Himalaya. Int J Ayurvedic Herb Med 2:661–678Google Scholar
  121. Kundu A, Saha S, Walia S, Kour C (2013) Antioxidant and antifungal properties of the essential oil of Anisomeles indica from India. J Med Plant Res 7(24):1774–1779Google Scholar
  122. Kunwar RM, Adhikari N (2005) Ethnomedicine of Dolpa district, Nepal: the plants, their vernacular names and uses. Lyonia 8:43–49Google Scholar
  123. Kunwar RM, Uprety Y, al BC (2009) Indigenous use and ethnopharmacology of medicinal plants in far-west Nepal. Ethnobot Res Appl 7:5–28CrossRefGoogle Scholar
  124. Kupcewicz B, Balcerowska-Czerniak G, Małecka M et al (2013) Structure-cytotoxic activity relationship of 3-arylideneflavanone and chromanone (E,Z isomers) and 3-arylflavones. Bioorg Med Chem Lett 23(14):4102–4106PubMedCrossRefPubMedCentralGoogle Scholar
  125. Kurade NP, Jaitak V, Kaul VK, Sharma OP (2010) Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum. Pharm Biol 48:539–544PubMedCrossRefPubMedCentralGoogle Scholar
  126. Kusari S, Singh S, Jayabaskaran C (2014) Rethinking production of Taxol W (paclitaxel) using endophyte. Trends Biotechnol 32:304–311PubMedCrossRefPubMedCentralGoogle Scholar
  127. Lagiou P, Rossi M, Lagiou A, Tzonou A, La Vecchia C, Trichopoulos D (2008) Flavonoid intake and liver cancer: a case–control study in Greece. Cancer Causes Control 19(8):813–818PubMedCrossRefPubMedCentralGoogle Scholar
  128. Lange BM, Croteau R (1999) Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint. Arch Biochem Biophys 365:170–174PubMedCrossRefPubMedCentralGoogle Scholar
  129. Lange BM, Wildung MR, McCaskill D, Croteau R (1998) A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc Natl Acad Sci U S A 95:2100–2104.  https://doi.org/10.1073/pnas.95.5.2100 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Lawrence BM (1992) Chemical components of Labiatae oils and their exploitation. Advances in Labiataescience. In: Harley RM, Reynolds T (eds.). Advances in labiate science. Royal Botanic Gardens, Kew, U.K, pp 399–35Google Scholar
  131. Lee ST, Wong PF, Cheah SC (2011) Alpha-tomatine induces apoptosis and inhibits nuclear factor-kappa B activation on human prostatic adenocarcinoma PC-3 cells. PLoS One 6:e18915PubMedPubMedCentralCrossRefGoogle Scholar
  132. Li Y, Pfeifer BA (2014) Heterologous production of plant-derived isoprenoid products in microbes and the application of metabolic engineering and synthetic biology. Curr Opin Plant Biol 19:8–13.  https://doi.org/10.1016/j.pbi.2014.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Li Y, Zhang G, Pfeifer BA (2009) Current and emerging options for Taxol production. In: Schrader J, Bohlmann J (eds) Biotechnology of isoprenoids. Advances in biochemical engineering/biotechnology. Springer, New York, pp 1–35Google Scholar
  134. Liew SY, Looi CY, Paydar M et al (2014) Subditine, a new monoterpenoidindole alkaloid from bark of Naucleasubdita (Korth.) Steud. induces apoptosis in human prostate cancer cells. PLoS One 9:e87286PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lim CW, Chan TK, Ng DS et al (2011) Andrographolide and its analogues: versatile bioactive molecules for combating inflammation and cancer. Clin Exp Pharmacol Physiol 39(3):300–310CrossRefGoogle Scholar
  136. Lind DS (2004) Arginine and cancer. J Nutr 134:2837–2841CrossRefGoogle Scholar
  137. Liu Q (2011) Triptolide and its expanding multiple pharmacological functions. Int Immunopharmacol 11:377–383PubMedCrossRefPubMedCentralGoogle Scholar
  138. Liu JJ, Lin DJ, Liu PQ et al (2006) Induction of apoptosis and inhibition of cell adhesive and invasive effects by tanshinone IIA in acute promyelocytic leukemia cells in vitro. J Biomed Sci 13:813–823PubMedCrossRefPubMedCentralGoogle Scholar
  139. Liu H, Wang Y, Tang Q et al (2014) MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli. Microb Cell Fact 13:135.  https://doi.org/10.1186/s12934-014-0135-y CrossRefPubMedPubMedCentralGoogle Scholar
  140. Lopez AD, Mathers CD, Ezzati M et al (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367(9524):1747–1757CrossRefGoogle Scholar
  141. Lou C, Yokoyama S, Saiki I, Hayakawa Y (2015) Selective anticancer activity of hirsutine against HER2 positive breast cancer cells by inducing DNA damage. Oncol Rep 33:2072–2076PubMedCrossRefPubMedCentralGoogle Scholar
  142. Ludwiczuk A, Skalicka-Woźniak K, Georgiev MI (2017) Terpenoids. In: Badal S, Delgoda R (eds) Pharmacognosy. Elsevier, Amsterdam, pp 233–266CrossRefGoogle Scholar
  143. Lui VW, Yau DM, Wong EY et al (2009) Cucurbitacin I elicits anoikis sensitization, inhibits cellular invasion and in vivo tumor formation ability of nasopharyngeal carcinoma cells. Carcinogenesis 30:2085–2094PubMedCrossRefPubMedCentralGoogle Scholar
  144. Lüttgen H, Rohdich F, Herz S et al (2000) Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. Proc Natl Acad Sci U S A 97:1062–1067PubMedPubMedCentralCrossRefGoogle Scholar
  145. Lutz MB, Baur AS, Schuler-Thurner B, Schuler G (2014) Immunogenic and tolerogenic effects of the chimeric IL-2-diphtheria toxin cytocidal agent Ontak® on CD25+ cells. Oncoimmunology 3:e28223PubMedPubMedCentralCrossRefGoogle Scholar
  146. Lynen F (1967) Biosynthetic pathways from acetate to natural products. Pure Appl Chem 14:137–168PubMedCrossRefPubMedCentralGoogle Scholar
  147. Malla B, Chhetri RB (2009) Indigenous knowledge on ethnobotanical plants of Kavrepalanchowk district. Kathmandu Univ J Sci Eng Technol 5:96–109Google Scholar
  148. Mandal SK, Mandal SC, Das AK et al (1981) Antipyretic activity of Eupatorium adenophorumleaf extract. Indian J Nat Prod 21(1):6–9Google Scholar
  149. Manderville RA (2001) Synthesis, proton-affinity and anti-cancer properties of the prodigiosin-group natural products. Curr Med Chem Anticancer Agents 1:195–218PubMedCrossRefPubMedCentralGoogle Scholar
  150. Mansour AF, Ramadan MM, Fekry RM et al (2016) Evaluation of synergistic interactions on antioxidant and anticancer efficacy of methanol extracts of some Egyptian spices in combination. Int J Biol Chem 11(1):9–16CrossRefGoogle Scholar
  151. Martin W (2010) Evolutionary origins of metabolic compartmentalization in eukaryotes. Philos Trans R Soc Lond B Biol Sci 365:847–855.  https://doi.org/10.1098/rstb.2009.0252 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):442CrossRefGoogle Scholar
  153. McEwen JT, Machado IMP, Connor MR, Atsumi S (2013) Engineering Synechococcus elongatus PCC 7942 for continuous growth under diurnal conditions. Appl Environ Microbiol 79:1668–1675.  https://doi.org/10.1128/AEM.03326-12 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Meylemans HA, Quintana RL, Harvey BG (2012) Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel 97:560–568.  https://doi.org/10.1016/j.fuel.2012.01.062 CrossRefGoogle Scholar
  155. Michelozzi M (1999) Defensive roles of terpenoid mixtures in conifers. Acta Bot Gallica 146:73–84.  https://doi.org/10.1080/12538078.1999.10515803 CrossRefGoogle Scholar
  156. Michl P, Gress TM (2004) Bacteria and bacterial toxins as therapeutic agents for solid tumors. Curr Cancer Drug Targets 4:689–702PubMedCrossRefPubMedCentralGoogle Scholar
  157. Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143.  https://doi.org/10.1016/j.abb.2010.09.028 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Mohanty B, Puri S, Kesavan V (2018) A review on therapeutic potential of Artemisia nilagirica. J Plant Biochem Physiol 6(205):2Google Scholar
  159. Mokta KK (2015) Inducible clindamycin resistance among clinical isolates of Staphylococcus aureus from Sub Himalayan Region of India. J Clin Diagn Res 9:20–23Google Scholar
  160. Moreira-Muñoz A, Muñoz-Schick M (2007) Classification, diversity, and distribution of Chilean Asteraceae: implications for biogeography and conservation. Divers Distrib 13(6):818–828CrossRefGoogle Scholar
  161. Morin PJ (2003) Drug resistance and the microenvironment: nature and nurture. Drug Resist Updat 6:169–172PubMedCrossRefPubMedCentralGoogle Scholar
  162. Murthy KS, Reddy MC, Pullaiah T (2015) Ethnobotany, chemistry and pharmacology of an aromatic genus anisomeleslinn. in India. Life 50:34Google Scholar
  163. Nandi S, Vracko M, Bagchi MC (2007) Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Chem Biol Drug Des 70(5):424–436PubMedCrossRefPubMedCentralGoogle Scholar
  164. Negi CS (2005) Socio-cultural and ethnobotanical value of a sacred forest, Thal Ke Dhar, central Himalaya. Indian J Tradit Knowl 4:190–198Google Scholar
  165. Neidle S (2016) Quadruplex nucleic acids as novel therapeutic targets. J Med Chem 59:5987–6011PubMedCrossRefPubMedCentralGoogle Scholar
  166. Niu F-X, He X, Wu Y-Q, Liu J-Z (2018) Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering. Front Microbiol 9:1623.  https://doi.org/10.3389/fmicb.2018.01623 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Nozzi NE, Oliver JWK, Atsumi S (2013) Cyanobacteria as a platform for biofuel production. Front Bioeng Biotechnol 1:7.  https://doi.org/10.3389/fbioe.2013.00007 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Okamoto DY, Okamoto K (2010) Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med Chem 2:619–646PubMedPubMedCentralCrossRefGoogle Scholar
  169. Okoye FBC, Odimegwu DC, Nworu CS et al (2016) Modulation of intracellular expression of IFN? And IL-2 in culture of splenic T lymphocytes by some flavonoid glycosides of Alchornea floribunda. Pharm Biol 54(9):1873–1880PubMedCrossRefPubMedCentralGoogle Scholar
  170. Oliveira-Filho AA, Fernandes HM, Assis TJ (2015) Lauraceae’s family: a brief review of cardiovascular effects. Int J Pharmacogn Phytochem Res 7:22–26Google Scholar
  171. Oudhia P, Joshi BS, Koshta VK (1998) Chhattisgarh kekleshkarakkharptwaron se homoeopathic davanirmankisambhavnayain (The possibilities of preparing homoeopathic drugs from obnoxious weeds of Chhattisgarh. In: Abstract: V national science conference. Bhartiya Krishi Anusandhan Samittee, JNKVV, GwaliorGoogle Scholar
  172. Outten CE, Halloran TVO (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492PubMedCrossRefPubMedCentralGoogle Scholar
  173. Özkan M (2008) Glandular and eglandular hairs of Salvia recognitaFisch. & Mey. (Lamiaceae) in Turkey. Bangladesh J Bot 37(1):93–95CrossRefGoogle Scholar
  174. Paiva AD, de Oliveira MD, de Paula SO et al (2012) Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology 158:2851–2858PubMedCrossRefPubMedCentralGoogle Scholar
  175. Pal R, Moitra SK, Chakravarti NN, Adhya RN (1972) Campesterol from Blumealacera. Phytochemistry 11(5):1855CrossRefGoogle Scholar
  176. Pan DJ, Li ZL, Hu CQ et al (1990) The cytotoxic principles of Pseudolarix kaempferi: pseudolaric acid-A and -B and related derivatives. Planta Med 56:383–385PubMedCrossRefPubMedCentralGoogle Scholar
  177. Pan J, Xu G, Yeung SC (2001) Cytochrome c release is upstream to activation of caspase-9, caspase-8 and caspase-3 in the enhanced apoptosis of anaplastic thyroid cancer cells induced by manumycin and paclitaxel. J Clin Endocrinol Metab 86:4731–4740PubMedCrossRefPubMedCentralGoogle Scholar
  178. Panat NA, Singh BG, Maurya DK et al (2016) Troxerutin, a natural flavonoid binds to DNA minor groove and enhances cancer cell killing in response to radiation. Chem Biol Interact 251:34–44PubMedCrossRefPubMedCentralGoogle Scholar
  179. Pandey S, Phulara SC, Jha A et al (2019) 3-Methyl-3-buten-1-ol (isoprenol) confers longevity and stress tolerance in Caenorhabditis elegans 3-Methyl-3-buten-1-ol (isoprenol) confers longevity and stress tolerance in Caenorhabditis elegans. Int J Food Sci Nutr.  https://doi.org/10.1080/09637486.2018.1554031 PubMedCrossRefPubMedCentralGoogle Scholar
  180. Pang X, Yi Z, Zhang J et al (2010) Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway. Cancer Res 70:1951–1959PubMedPubMedCentralCrossRefGoogle Scholar
  181. Patel NB, Patel KC (2013) Antimicrobial activity of Anisomeles indica Linn. against UTI pathogens. The Microbes Volume: 4, September-2013Google Scholar
  182. Peralta-Yahya PP, Ouellet M, Chan R et al (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483.  https://doi.org/10.1038/ncomms1494 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Pezzani R, Vitalini S, Iriti M (2017) Bioactivities of Origanumvulgare L.: an update. Phytochem Rev 6(6):1253–1268CrossRefGoogle Scholar
  184. Phelan RM, Sekurova ON, Keasling JD, Zotchev SB (2014) Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synth Biol 4:393–399.  https://doi.org/10.1021/sb5002517 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Phondani PC, Maikhuri RK, al RLS (2010) Ethnobotanical uses of plants among the Bhotiya tribal communities of Nitri valley in central Himalaya, India. Ethnobot Res 8:233–244CrossRefGoogle Scholar
  186. Phulara SC, Chaturvedi P, Gupta P (2016) Isoprenoid-based biofuels: homologous expression and heterologous expression in prokaryotes. Appl Environ Microbiol 82:5730–5740.  https://doi.org/10.1128/AEM.01192-16 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Phulara SC, Chaturvedi P, Chaurasia D et al (2018) Modulation of culture medium confers high-specificity production of isopentenol in Bacillus subtilis. J Biosci Bioeng 127:458–464.  https://doi.org/10.1016/j.jbiosc.2018.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Pirani A, Moazzeni H, Mirinejad S et al (2011) Ethnobotany of Juniperus excelsa M. Bieb. (Cupressaceae) in Iran. Ethnobot Res Appl 9:335–341CrossRefGoogle Scholar
  189. Polunin O, Stainton A (1984) Flowers of the Himalaya. Oxford University Press, OxfordGoogle Scholar
  190. Prajapati MS, Patel JB, Modi K, Shah M (2010) Leucasaspera: a review. Pharmacogn Rev 4(7):85PubMedPubMedCentralCrossRefGoogle Scholar
  191. Priydarshi R, Melkani AB, Mohan L (2016) Terpenoid composition and antibacterial activity of the essential oil from Inulacappa (Buch-Ham. ex D. Don) DC. J Essent Oil Res 28:172–176CrossRefGoogle Scholar
  192. Qiang H, Zarmi Y, Richmond A (1998) Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol 33:165–171.  https://doi.org/10.1017/S0967026298001632 CrossRefGoogle Scholar
  193. Radan M, Carev I, Teševic V et al (2017) Qualitative HPLC-DAD/ESI-TOF-MS analysis, cytotoxic, and apoptotic effects of croatian endemic Centaurea ragusina L. aqueous extracts. Chem Biodivers 14(9):e1700099CrossRefGoogle Scholar
  194. Rai L, Sharma E (1994) Medicinal plants of the Sikkim Himalaya: status, usage and potential. Bishen Singh Mahendra Pal Singh, Dehradun, p 159Google Scholar
  195. Raja RR (2012) Medicinally potential plants of Labiatae (Lamiaceae) family: an overview. Res J Med Plant 6(3):203–213CrossRefGoogle Scholar
  196. Rajakumar N, Shivanna MB (2010) Traditional herbal medicinal knowledge in Sagar Taluk of Shimoga district, Karnataka, India. Indian J Nat Prod Res 1:102–108Google Scholar
  197. Ramos S (2008) Cancer chemoprevention and chemotherapy: Dietary polyphenols and signaling pathways. Mol Nutr Food Res 52:507–526PubMedCrossRefPubMedCentralGoogle Scholar
  198. Rana CS, Sharma A, Kumar N et al (2010) Ethnopharmacology of some important medicinal plants of Nanda Devi National Park (NDNP) Uttarakhand, India. Nat Sci 8(11):9–14Google Scholar
  199. Rashid S, Rather MA, Shah WA, Bhat BA (2013) Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd. Food Chem 138:693–700PubMedCrossRefPubMedCentralGoogle Scholar
  200. Rather MA, Hassan T, Dar BA et al (2012) Essential oil composition of NepetaraphanorhizaBenth growing in Kashmir valley. Rec Nat Prod 6:67–70Google Scholar
  201. Rastogi N, Chag M, Ayyagari S (1993) Myocardial ischemia after 5-fluorouracil chemotherapy. Int J Cardiol 42(3):285–287PubMedCrossRefPubMedCentralGoogle Scholar
  202. Rijal A (2011) Surviving on knowledge: ethnobotany of Chepang community from mid-hills of Nepal. Ethnobot Res Appl 9:181–215CrossRefGoogle Scholar
  203. Rivat C, Rodrigues S, Bruyneel E et al (2005) Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3 (TFF3) – and vascular endothelial growth factor-mediated cellular invasion and tumor growth. Cancer Res 65:195–202PubMedPubMedCentralGoogle Scholar
  204. Rohdich F, Wungsintaweekul J, Fellermeier M et al (1999) Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci U S A 96:11758–11763PubMedPubMedCentralCrossRefGoogle Scholar
  205. Rohdich F, Hecht S, Gärtner K et al (2002a) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci U S A 99:1158–1163.  https://doi.org/10.1073/pnas.032658999 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Rohdich F, Zepeck F, Adam P et al (2002b) The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc Natl Acad Sci U S A 100:1586–1591CrossRefGoogle Scholar
  207. Rohmer M, Knani TM, Simonin P et al (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524PubMedPubMedCentralCrossRefGoogle Scholar
  208. Rokaya MB, Münzbergová Z, Timsina B (2010) Ethnobotanical study of medicinal plants from the Humla district of western Nepal. J Ethnopharmacol 130:485–504PubMedCrossRefPubMedCentralGoogle Scholar
  209. Rossi M, Bosetti C, Negri E, Lagiou P, La Vecchia C (2010) Flavonoids, Proanthocyanidins, and Cancer risk: a network of case-control studies from Italy. Nutr Cancer 62(7):871–877PubMedCrossRefPubMedCentralGoogle Scholar
  210. Roullet JB, Luft UC, Xue H et al (1997) Farnesol inhibits L-type Ca2+ channels in vascular smooth muscle cells. J Biol Chem 272:32240–32246.  https://doi.org/10.1074/JBC.272.51.32240 CrossRefPubMedPubMedCentralGoogle Scholar
  211. Safia KM, Jadiya P et al (2015) The chromone alkaloid, Rohitukine, affords anti-cancer activity via modulating apoptosis pathways in A549 cell line and yeast mitogen activated protein kinase (MAPK) pathway. PLoS One 10:1–18CrossRefGoogle Scholar
  212. Sah S, Lohani H, Narayan O et al (2010) Volatile constituents of Artemisia maritima Linn. grown in Garhwal Himalaya. J Essent Oil Bear Plants 13:603–606CrossRefGoogle Scholar
  213. Salminen A, Lehtonen M, Paimela T et al (2010) Celastrol: molecular targets of Thunder God Vine. Biochem Biophys Res Commun 394:439–442PubMedCrossRefPubMedCentralGoogle Scholar
  214. Sarria S, Wong B, Martín HG et al (2014) Microbial synthesis of pinene. ACS Synth Biol 3:466–475.  https://doi.org/10.1021/sb4001382 CrossRefPubMedPubMedCentralGoogle Scholar
  215. Satyal P, Paudel P, Kafle A et al (2012a) Bioactivities of volatile components from Nepalese Artemisia species. Nat Prod Commun 7:1651–1658PubMedPubMedCentralGoogle Scholar
  216. Satyal P, Paudel P, Poudel A, Setzer WN (2012b) Antimicrobial activities and constituents of the leaf essential oil of Lawsoniainermis growing in Nepal. Pharmacol OnLine 1:31–35Google Scholar
  217. Satyal P, Paudel P, Poudel A et al (2013) Bioactivities and compositional analyses of Cinnamomum essential oils from Nepal: C. camphora, C. tamala, and C. glaucescens. Nat Prod Commun 8:1777–1784PubMedPubMedCentralGoogle Scholar
  218. Satyal P, Chhetri BK, Dosoky NS et al (2015a) Chemical composition of Blumea lacera essential oil from Nepal biological activities of the essential oil and (Z)-lachnophyllum ester. Nat Prod Commun 10:1749–1750PubMedPubMedCentralGoogle Scholar
  219. Satyal P, Shrestha S, Setzer WN (2015b) Composition and bioactivities of an (E)-β-farnesenechemotype of chamomile (Matricariachamomilla) essential oil from Nepal. Nat Prod Commun 10:1453–1457PubMedPubMedCentralGoogle Scholar
  220. Satyal P, Chhetri BK, Dosoky NS et al (2015c) Chemical composition of Nardostachysgrandiflora rhizome oil from Nepal—a contribution to the chemotaxonomy and bioactivity of Nardostachys. Nat Prod Commun 10:1067–1070PubMedPubMedCentralGoogle Scholar
  221. Savage TJ, Hatch MW, Croteau R (1994) Monoterpene synthases of Pinus contorta and related conifers. A new class of terpenoid cyclase. J Biol Chem 269:4012–4020PubMedPubMedCentralGoogle Scholar
  222. Scalbert A, Manach C, Morand C, Rémésy C, Jime’nez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306PubMedCrossRefPubMedCentralGoogle Scholar
  223. Semwal RB, Semwal DK, Mishra SP, Semwal R (2015) Chemical composition and antibacterial potential of essential oils from Artemisia cappillaris, Artemisia nilagirica, Citrus limon, Cymbopogonflexuosus, Hedychiumspicatum and Ocimumtenuiflorum. Nat Prod J 5:199–205Google Scholar
  224. Sethi G, Ahn KS, Pandey MK et al (2007) Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood 109:2727–2735PubMedCrossRefPubMedCentralGoogle Scholar
  225. Shah NC (2014) The economic and medicinal Artemisia species in India. Scitech J 1(1):29–38Google Scholar
  226. Sharma PK, Chauhan NS, Lal B (2004) Observations on the traditional phytotherapy among the inhabitants of Parvati valley in western Himalaya, India. J Ethnopharmacol 92:167–176PubMedCrossRefPubMedCentralGoogle Scholar
  227. Sharma P, Agnihotry A, Sharma PP (2015) Anethnobotanical study of medicinal plants in Murari Devi and surrounding areas (Mandi district, Himachal Pradesh), India. Indian For 141:68–78Google Scholar
  228. Shen SQ, Zhang Y, Xiang JJ, Xiong CL (2007) Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World J Gastroenterol 13:1953–1961PubMedPubMedCentralCrossRefGoogle Scholar
  229. Shin SY, Gil HN, Kim BS et al (2017) Agerarin, identified from Ageratum houstonianum, stimulates circadian CLOCK-mediated aquaporin-3 gene expression in HaCaT keratinocytes. Sci Rep 7(1):11175PubMedPubMedCentralCrossRefGoogle Scholar
  230. Shome U, Joshi P, Sharma HP (1984) Pharmacognostic studies on Artemisia scoparia Waldst. and Kit. Proc Plant Sci 93(2):151–164Google Scholar
  231. Shukla V, Phulara SC, Yadav D et al (2012) Iridoid compound 10-O-trans-p-coumaroylcatalpol extends longevity and reduces α synuclein aggregation in Caenorhabditis elegans. CNS Neurol Disord Drug Targets 11:984–992PubMedCrossRefPubMedCentralGoogle Scholar
  232. Silva JR, do Carmo DF, Reis ÉM, Machado G, Leon LL, Silva BO, Ferreira JL, Amaral AC (2009) Chemical and biological evaluation of essential oils with economic value from Lauraceae species. J Braz Chem Soc 20(6):1071–1076CrossRefGoogle Scholar
  233. da Silva ACR, Lopes PM, De Azevedo MMB et al (2012) Biological activities of a-pinene and β-pinene enantiomers. Molecules 17:6305–6316.  https://doi.org/10.3390/molecules17066305 CrossRefPubMedPubMedCentralGoogle Scholar
  234. Singh G, Rawat GS (2011) Ethnomedicinal survey of Kedarnath Wildlife Sanctuary in western Himalaya, India. Indian J Fundam Appl Life Sci 1:35–46Google Scholar
  235. Singh B, Sahu PM, Sharma MK (2002) Anti-inflammatory and antimicrobial activities of triterpenoids from Strobilanthes callosus Nees. Phytomedicine 9(4):355–359PubMedCrossRefPubMedCentralGoogle Scholar
  236. Singh O, Khanam Z, Misra N, Srivastava MK (2011) Chamomile (Matricariachamomilla L.): an overview. Pharmacogn Rev 5(9):82PubMedPubMedCentralCrossRefGoogle Scholar
  237. Singh KN, Lal B, Todaria NP (2012) Ethnobotany of higher plants in Spiti Cold Desert of western Himalaya. Nat Sci 10:7–14Google Scholar
  238. Singh C, Singh S, Pande C et al (2013) Exploration of antimicrobial potential of essential oils of Cinnamomum glanduliferum, Feronia elephantum, Bupleurum hamiltonii and Cyclospermum leptophyllum against foodborne pathogens. Pharm Biol 51:1607–1610PubMedCrossRefPubMedCentralGoogle Scholar
  239. Singh Y, Gulati A, Singh DP, Khattar JIS (2018) Cyanobacterial community structure in hot water springs of Indian North-Western Himalayas: a morphological, molecular and ecological approach. Algal Res 29:179–192.  https://doi.org/10.1016/j.algal.2017.11.023 CrossRefGoogle Scholar
  240. Sirerol AJ, RodrÚguez ML, Mena S, Asensi MA, Estrela JM, Ortega AL (2016) Role of natural stilbenes in the prevention of cancer. Oxidative Med Cell Longev 2016:1–15CrossRefGoogle Scholar
  241. Song QH, Kobayashi T, Hong T, Cyong JC (2002) Effects of Inulabritannica on the production of antibodies and cytokines and on T cell differentiation in C57BL/6 mice immunized by ovalbumin. Am J Chin Med 30(2–3):297–305PubMedCrossRefPubMedCentralGoogle Scholar
  242. Srivastava D, Haider F, Dwivedi PD (2005) Comparative study of the leaf oil of Juniperus macropoda growing in Garhwal regions of Uttaranchal (India). Flavour Fragr J 20:460–461CrossRefGoogle Scholar
  243. Srivastava P, Kumar P, Singh DK, Singh VK (2012) Biological properties of Thuja orientalis Linn. Adv Life Sci 2(2):17–20CrossRefGoogle Scholar
  244. Stappen I, Wanner J, Tabanca N et al (2014) Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plants of western Himalaya. Planta Med 80:1079–1087PubMedCrossRefPubMedCentralGoogle Scholar
  245. Stappen I, Tabanca N, Ali A et al (2015) Chemical composition and biological activity of essential oils from wild growing aromatic plant species of Skimmia laureola and Juniperus macropoda from western Himalaya. Nat Prod Commun 10:1071–1074PubMedPubMedCentralGoogle Scholar
  246. Strachey R, Duthie JF (1974) Catalogue of the plants of Kumaon and of the adjacent portions Garhwal and Tibet, rep. edition, 170 Delhi: Periodical ExpertsGoogle Scholar
  247. Su CC, Chen GW, Kang JC et al (2008) Growth inhibition and apoptosis induction by tanshinone IIA in human colon adenocarcinoma cells. Planta Med 74:1357–1362PubMedCrossRefPubMedCentralGoogle Scholar
  248. Sung HJ, Choi SM, Yoon Y et al (1999) Tanshinone IIA, an ingredient of Salvia miltiorrhiza BUNGE, induces apoptosis in human leukemia cell lines through the activation of caspase-3. Exp Mol Med 31:174–178PubMedCrossRefPubMedCentralGoogle Scholar
  249. Suntar I (2014) The medicinal value of asteraceae family plants in terms of wound healing activity. FABAD J Pharm Sci 39(1):21Google Scholar
  250. Süntar I, Nabavi SM, Barreca D et al (2018) Pharmacological and chemical features of Nepeta L. genus: its importance as a therapeutic agent. Phytother Res 32(2):185–198PubMedCrossRefPubMedCentralGoogle Scholar
  251. Tamokou JD, Mbaveng AT, Kuete V (2017) Antimicrobial activities of African medicinal spices and vegetables. In: Medicinal spices and vegetables from Africa. Academic Press, Amsterdam, pp 207–237CrossRefGoogle Scholar
  252. Tang Z, Tang Y, Fu L (2003) Growth inhibition and apoptosis induction in human hepatoma cells by tanshinone II A. J Huazhong Univ Sci Technol Med Sci 23(2):166–168, 172PubMedCrossRefPubMedCentralGoogle Scholar
  253. Tang JZ, Kong XJ, Banerjee A et al (2010) STAT3alpha is oncogenic for endometrial carcinoma cells and mediates the oncogenic effects of autocrine human growth hormone. Endocrinology 151:4133–4145PubMedCrossRefPubMedCentralGoogle Scholar
  254. Tashiro M, Kiyota H, Kawai-Noma S et al (2016) Bacterial production of pinene by a laboratory-evolved pinene-synthase. ACS Synth Biol 5:1011–1020.  https://doi.org/10.1021/acssynbio.6b00140 CrossRefPubMedPubMedCentralGoogle Scholar
  255. Tchen TT (1958) Mevalonic kinase: purification and purification. J Biol Chem 233:1100–1103PubMedPubMedCentralGoogle Scholar
  256. Thomas P, Farjon A (2011) Taxus wallichiana. IUCN Red List Threat. Species e.T46171879A9730085Google Scholar
  257. Tippmann S, Chen Y, Siewers V, Nielsen J (2013) From flavors and pharmaceuticals to advanced biofuels: Production of isoprenoids in Saccharomyces cerevisiae. Biotechnol J 8:1435–1444.  https://doi.org/10.1002/biot.201300028 CrossRefPubMedPubMedCentralGoogle Scholar
  258. Toton E, Romaniuk A, Budzianowski J et al (2016) Zapotin (5,6,2′,6′-tetramethoxyflavone) modulates the crosstalk between autophagy and apoptosis pathways in cancer cells with overexpressed constitutively active PKC? Nutr Cancer 68(2):290–304PubMedCrossRefPubMedCentralGoogle Scholar
  259. Uniyal B, Shiva V (2005) Traditional knowledge on medicinal plants among rural women of the Garhwal Himalaya, Uttaranchal. Indian. J Tradit Knowl 4:259–266Google Scholar
  260. Ünlü AE, Prasad B, Anavekar K et al (2017) Investigation of a green process for the polymerization of catechin. Prep Biochem Biotechnol 47(9):918–924CrossRefGoogle Scholar
  261. Uprety Y, Asselin H, Boon EK et al (2010) Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, central Nepal. J Ethnobiol Ethnomed 6(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  262. Uprety Y, Poudel RC, Asselin H, Boon E (2011) Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower Project, western Nepal. Environ Dev Sustain 13:463–492CrossRefGoogle Scholar
  263. Ushir YV, Tatiya AU, Surana SJ, Patil UK (2010) Gas chromatography-mass spectrometry analysis and antibacterial activity of essential oil from aerial parts and roots of Anisomeles indica Linn. Int J Green Pharm 4:98–101CrossRefGoogle Scholar
  264. Vaishampayan U, Hussain M, Banerjee M et al (2007) Lycopene and soy isoflavones in the treatment of prostate cancer. Nutr Cancer 59:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  265. Vallera DA, Li C, Jin N, Panoskaltsis-Mortari A, Hall WA (2002) Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst 94:597–606PubMedCrossRefPubMedCentralGoogle Scholar
  266. Venkatesan T, Jeong MJ, Choi YW (2016) Deoxyrhapontigenin, a natural stilbene derivative isolated from Rheum undulatum L. induces endoplasmic reticulum stress–mediated apoptosis in human breast cancer cells. Integr Cancer Ther 15(4):NP44–NP52PubMedPubMedCentralCrossRefGoogle Scholar
  267. Vittorio O, Le Grand M, Makharza SA et al (2018) Doxorubicin synergism and resistance reversal in human neuroblastoma BE(2)C cell lines: an in vitro study with dextran-catechin nanohybrids. Eur J Pharm Biopharm 122:176–185PubMedCrossRefPubMedCentralGoogle Scholar
  268. Walenkamp AM, Boer IG, Bestebroer J, Rozeveld D, Timmer-Bosscha H, Hemrika W, van Strijp JA, de Haas CJ (2009) Staphylococcal superantigen-like 10 inhibits CXCL12-induced human tumor cell migration. Neoplasia (New York) 11(4):333–344.  https://doi.org/10.1593/neo.81508 CrossRefGoogle Scholar
  269. Wang X, Wei Y, Yuan S et al (2005) Potential anticancer activity of tanshinone IIA against human breast cancer. Int J Cancer 116:799–807PubMedCrossRefPubMedCentralGoogle Scholar
  270. Wang C, Yoon SH, Jang HJ et al (2011) Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng 13:648–655.  https://doi.org/10.1016/j.ymben.2011.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  271. Warrier PK, Nambiar VP (1993) Indian medicinal plants: a compendium of 500 species. Orient Blackswan, HyderabadGoogle Scholar
  272. WHO (2005) Preventing chronic diseases: a vital investment. WHO global report. WHO Press, GenevaGoogle Scholar
  273. Wilding EI, Brown JR, Bryant AP et al (2000) Identification, evolution, and essentiality of the mevalonate pathway for isopentenyl diphosphate biosynthesis in gram-positive cocci. J Bacteriol 182:4319–4327PubMedPubMedCentralCrossRefGoogle Scholar
  274. Wondraczek L, Batentschuk M, Schmidt MA et al (2013) Solar spectral conversion for improving the photosynthetic activity in algae reactors. Nat Commun 4:2047.  https://doi.org/10.1038/ncomms3047 CrossRefPubMedPubMedCentralGoogle Scholar
  275. Wong J, Rios-solis L, Keasling JD (2017) Microbial production of isoprenoids. In: LEE S (ed) Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals, handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1–24Google Scholar
  276. Wu WL, Chang WL, Chen CF (1991) Cytotoxic activities of tanshinones against human carcinoma cell lines. Am J Chin Med 19:207–216PubMedCrossRefPubMedCentralGoogle Scholar
  277. Yang H, Chen D, Cui QC et al (2006) Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 66:4758–4765PubMedCrossRefPubMedCentralGoogle Scholar
  278. Yang J, Nie Q, Ren M et al (2013) Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol Biofuels 6:60.  https://doi.org/10.1186/1754-6834-6-60 CrossRefPubMedPubMedCentralGoogle Scholar
  279. Yang XK, Xu MY, Xu GS et al (2014) In vitro and in vivo antitumor activity of scutebarbatine A on human lung carcinoma A549 cell lines. Molecules 19:8740–8751PubMedPubMedCentralCrossRefGoogle Scholar
  280. Yashina OG, Vereshchagin LI (1978) Natural and synthetic acetylenicantimycotics. Russ Chem Rev 47:307–317CrossRefGoogle Scholar
  281. Yu SG, Hildebrandt LA, Elson CE (1995) Geraniol, an inhibitor of mevalonate biosynthesis, suppresses the growth of hepatomas and melanomas transplanted to rats and mice. J Nutr 125:2763–2767.  https://doi.org/10.1093/jn/125.11.2763 CrossRefPubMedPubMedCentralGoogle Scholar
  282. Zhao J, Li Q, Sun T et al (2013) Engineering central metabolic modules of Escherichia coli for improving beta-carotene production. Metab Eng 17:42–50.  https://doi.org/10.1016/j.ymben.2013.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  283. Zheng Y, Liu Q, Li L et al (2013) Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels. Biotechnol Biofuels 6:57PubMedPubMedCentralCrossRefGoogle Scholar
  284. Zhou D, Sun J, Yu H et al (2001) Nodulisporium, a genus new to China. Mycosystema 20:277–278Google Scholar
  285. Zhou X, Zhu H, Liu L et al (2010) A review: recent advances and future prospects of Taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717.  https://doi.org/10.1007/s00253-010-2546-y CrossRefPubMedPubMedCentralGoogle Scholar
  286. Zhou K, Zou R, Zhang C et al (2013) Optimization of amorphadiene synthesis in Bacillus subtilis via transcriptional, translational, and media modulation. Biotechnol Bioeng 110:2556–2561.  https://doi.org/10.1002/bit.24900 CrossRefPubMedPubMedCentralGoogle Scholar
  287. Zupkó I, Réthy B, Hohmann J et al (2009) Antitumor activity of alkaloids derived from amaryllidaceae species. In Vivo (Brooklyn) 23:41–48Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Suresh Chandra Phulara
    • 1
  • Nazia Ahmad
    • 2
  • Bidyut Mazumdar
    • 3
  • Vikrant Singh Rajput
    • 2
  1. 1.Department of BiotechnologyKoneru Lakshmaiah Education FoundationGunturIndia
  2. 2.School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Department of Chemical EngineeringNational Institute of Technology RaipurRaipurIndia

Personalised recommendations