Advertisement

Assessment of Genes and Enzymes of Microorganisms of High Altitudes and Their Application in Agriculture

  • Geeta Bhandari
  • Niki Nautiyal
  • Mukund Sharma
Chapter
  • 36 Downloads
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

Extreme environments are considered the biodiversity hotspots especially in terms of microorganisms. Microbiomes of the extreme environment impart important information about the critical limits for survival and adaptability of microorganism. Hill and mountain agroecosystems demand distinct microflora which can endure in these extreme environments and simultaneously perpetuate their plant growth promontory properties. Microorganism native of the cold environment is widely distributed in the agroecosystem and has physiologically, metabolically, and biologically well adapted to such environments. Thus, microbial inoculants from these extreme conditions possessing PGP attributes can be efficiently utilized for promoting growth and yield of high altitude crops. Numerous plant growth-promoting rhizobacteria (PGPR) from high altitude soils containing vital enzymes involved in plant growth enhancement have been reported. These organisms can thus be employed as biofertilizers, biocontrol agents, and bioremediation for enhancing agricultural productivity.

Keywords

Microbial enzymes High altitude regions Agriculture Microbial genes PGPR 

References

  1. Anderson JA, Buchanan DW, Stall RE, Hall CB (1982) Frost injury of tender plants increased by Pseudomonas syringae van Hall. J Am Soc Hortic Sci 107:123–125Google Scholar
  2. Andrews JH, Harris RF (2003) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180CrossRefGoogle Scholar
  3. Arp DJ (2000) The nitrogen cycle. In: Triplett EW (ed) Prokaryotic nitrogen fixation. Horizon Scientific Press, Wymondham, pp 1–14Google Scholar
  4. Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications. Addison-Wesley Longman, Menlo ParkGoogle Scholar
  5. Babu-Khan S, Yeo C, Martin WL, Duron MR, Rogers R, Goldstein A (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61:972–978PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252CrossRefGoogle Scholar
  7. Bar-Yosef B, Rogers RD, Wolfram JH, Richman E (1999) Pseudomonas cepacia-mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci Soc Am J 63:1703–1708CrossRefGoogle Scholar
  8. Beacham IR (1980) Periplasmic enzymes in gram-negative bacteria. Int J Biochem 10:877–883CrossRefGoogle Scholar
  9. Beijerinck MW (1888) Cultur des Bacillus radicola aus den Kno¨llchen. Bot Ztg 46:740–750Google Scholar
  10. Bisht CS, Joshi GK, Mishra PK (2014) CspA encodes a major cold shock protein in Himalayan psychrotolerant Pseudomonas strains. Interdiscip Sci 6:140–148PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503PubMedCrossRefPubMedCentralGoogle Scholar
  12. Braun V, Mahren S (2005) Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type. FEMS Microbiol Rev 29:673–684PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bric JM, Bostock RM, Silverstone SR (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Microbiol 57:535–538CrossRefGoogle Scholar
  14. Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–3012PubMedCrossRefPubMedCentralGoogle Scholar
  15. Butterly CR, Bunemann EK, McNeill AM, Baldock JA, Marschner P (2009) Carbon pulses but not phosphorus pulses are related to decrease in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416CrossRefGoogle Scholar
  16. Celik Y, Graham LA, Mok YF, Bar M, Davies PL, Braslavsky I (2010) Superheating of ice crystals in antifreeze protein solutions. Proc Natl Acad Sci U S A 107:5423–5428PubMedPubMedCentralCrossRefGoogle Scholar
  17. Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chembiochem 6:601–611PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cloutier J, Laberge S, Castonguay Y, Antoun H (1996a) Characterization and mutational analysis of nodHPQ genes of Rhizobium sp. strain N33. Mol Plant Microbe Interact 9:720–728CrossRefGoogle Scholar
  20. Cloutier J, Laberge S, Prévost D, Antoun H (1996b) Sequence and mutational analysis of the common nodBCIJ region of Rhizobium sp. (Oxytropis arctobia) strain N33, a nitrogen-fixing microsymbiont of both arctic and temperate legumes. Mol Plant Microbe Interact 9:523–531PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cloutier J, Laberge S, Antoun H (1997) Sequence and mutational analysis of the 6.7-kb region containing nodAFEG genes of Rhizobium sp. strain N33: evidence of DNA rearrangements. Am Phytopathol Soc 10:401–406Google Scholar
  22. Collins T, Margesin R (2019) Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol 103:2857–2871.  https://doi.org/10.1007/s00253-019-09659-5 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249PubMedPubMedCentralCrossRefGoogle Scholar
  24. Das K, Katiyar V, Goel R (2003) P solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol Res 158:359–362PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dean CR, Poole K (1993) Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: involvement of a two-component regulatory system. Mol Microbiol 8:1095–1103PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dénarié J, Debellé F, Rosenberg C (1992) Signaling and host range variation in nodulation. Annu Rev Microbiol 46:497–531PubMedCrossRefPubMedCentralGoogle Scholar
  27. Di-Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28:87–94CrossRefGoogle Scholar
  28. Dolkar D, Dolkar P, Angmo S, Chaurasia OP, Stobdan T (2018) Stress tolerance and plant growth promotion potential of Enterobacter ludwigii PS1 isolated from Seabuckthorn rhizosphere. Biocatal Agric Biotechnol 14:438–443.  https://doi.org/10.1016/j.bcab.2018.04.012 CrossRefGoogle Scholar
  29. Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322–328CrossRefGoogle Scholar
  30. Eady RR (1996) Structure−function relationships of alternative nitrogenases. Chem Rev 96:3013–3030PubMedCrossRefPubMedCentralGoogle Scholar
  31. Egamberdiyeva D, Höflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35:973–978CrossRefGoogle Scholar
  32. Ehmann DE, Shaw-Reid CA, Losey HC, Walsh CT (2000) The Entf and Ente adenylation domains of Escherichia coli enterobactin synthetase: sequestration and selectivity in acyl-amp transfers to thiolation domain cosubstrates. Proc Natl Acad Sci U S A 97:2509–2514PubMedPubMedCentralCrossRefGoogle Scholar
  33. Enz S, Mahren S, Stroeher UH, Braun V (2000) Surface signaling in ferric citrate transport gene induction: interaction of the FecA, FecR, and FecI regulatory proteins. J Bacteriol 182:637–646PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fages J, Arsac JF (1991) Sunflower inoculation with Azospirillum and other plant growth promoting rhizobacteria. Plant Soil 137:87–90CrossRefGoogle Scholar
  35. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488PubMedCrossRefPubMedCentralGoogle Scholar
  36. Freitas JR, Germida JJ (1992) Growth promotion of winter wheat by fluorescent pseudomonads under field conditions. Soil Biol Biochem 24:1137–1146CrossRefGoogle Scholar
  37. Fuentes-Ramírez LE, Caballero-Mellado J (2006) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Amsterdam, pp 143–172CrossRefGoogle Scholar
  38. Gehring AM, Bradley KA, Walsh CT (1997) Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochemist 36:8495–8503CrossRefGoogle Scholar
  39. Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2+−dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245:67–720CrossRefGoogle Scholar
  40. Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  41. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68PubMedCrossRefPubMedCentralGoogle Scholar
  42. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  43. Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by Gram-negative bacteria. In: Torriani-Gorini A, Yagiland E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, pp 197–203Google Scholar
  44. Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12:185–193CrossRefGoogle Scholar
  45. Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5:72–74Google Scholar
  46. Govindarajan AJ, Lindow SE (1988) Phospholipid requirement for expression of ice nuclei in Pseudomonas syringae and in vitro. J Biol Chem 263:9333–9338PubMedGoogle Scholar
  47. Griffith M, Ewart KV (1995) Antifreeze proteins and their potential use in frozen foods. Biotechnol Adv 13:375–383PubMedCrossRefGoogle Scholar
  48. Grünewald J, Marahiel MA (2006) Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev 70:121–146PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377CrossRefGoogle Scholar
  50. Haldiman P (1998) Low growth temperature induced changes to pigment composition and photosynthesis in Zea Mays genotypes differing in chilling sensitivity. Plant Cell Environ 21:200–208CrossRefGoogle Scholar
  51. Hardoim PR, Van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471CrossRefGoogle Scholar
  52. Höflich G, Wiehe W, Kuhn G (1994) Plant growth stimulation with symbiotic and associative rhizosphere microorganisms. Experientia 50:897–905CrossRefGoogle Scholar
  53. Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96:2965–2982PubMedCrossRefGoogle Scholar
  54. Jodha NS, Shrestha S (1993) Sustainable and more productive mountain agriculture: problems and prospects. In: Mountain environment and development—part 3 (thematic papers). ICIMOD, Kathmandu, pp 1–65Google Scholar
  55. Jorquera MA, Hernandez MT, Rengel Z, Marschner P, Mora MD (2008) Isolation of culturable phosphor bacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034CrossRefGoogle Scholar
  56. Kajava AV, Lindow SE (1993) A model of the three-dimensional structure of ice nucleation proteins. J Mol Biol 232(3):709–717PubMedCrossRefGoogle Scholar
  57. Katiyar V, Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:163–168PubMedCrossRefGoogle Scholar
  58. Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by a mutant fluorescent pseudomonad. Plant Growth Regul 42:239–244CrossRefGoogle Scholar
  59. Kawahara H (2008) Cryoprotectants and ice-binding proteins in psychrophiles: from biodiversity to biotechnology. Springer, Heidelberg, pp 229–246CrossRefGoogle Scholar
  60. Keating TA, Marshall CG, Walsh CT (2000) Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF, and VibH. Biochemistry 39:15522–15530PubMedCrossRefGoogle Scholar
  61. Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemist 33:389–397CrossRefGoogle Scholar
  62. Kim KY, McDonald GA, Jordan D (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352CrossRefGoogle Scholar
  63. Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003CrossRefGoogle Scholar
  64. Kim KY, Hwangbo H, Kim YW, Kim HJ, Park KH, Kim YC, Seoung KY (2002) Organic acid production and phosphate solubilization by Enterobacter intermedium 60–2G. Korean J Soil Sci Fertil 35:59–67Google Scholar
  65. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Angers INRA (ed) Proceedings of the 4th international conference on plant pathogenic bacteria, Station de Pathologie Vegetale et Phytobacteriologie, vol 2. Gilbert-Clarey, Tours, pp 879–882Google Scholar
  66. Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020–1024CrossRefGoogle Scholar
  67. Knight CA, Hallett J, Devries AL (1988) Solute effects on ice recrystallization: an assessment technique. Cryobiology 25:55–60PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kohli RM, Trauger JW, Schwarzer D, Marahiel MA, Walsh CT (2001) Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases. Biochemistry 40:7099–7108PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kozloff LM, Schofield MA, Lute M (1983) Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola. J Bacteriol 153:222–231PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kropp BR, Thomas E, Pounder JI, Anderson AJ (1996) Increased emergence of spring wheat after inoculation with Pseudomonas chlororaphis isolate 2E3 under field and laboratory conditions. Biol Fertil Soils 23:200–206CrossRefGoogle Scholar
  71. Kumar V, Singh P, Jorquera MA, Sangwan P, Kumar P, Verma AK, Agrawal S (2013) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29:1361–1369PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal HS (2016) Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2:1009Google Scholar
  73. Lee RE, Warren GJ, Gusta LV (1995) Biochemistry of bacterial ice nuclei. In: Ray F, Paul WK (eds) Biological ice nucleation and its application. APS Press, St Paul, pp 63–83Google Scholar
  74. Lindow SE (1983) The role of bacterial ice nucleation in frost injury to plants. Ann Rev Phytopathol 21:363–384CrossRefGoogle Scholar
  75. Lindow SE (1997) In: Naks JP, Hagedron C (eds) Biotechnology of Plant–Microbe Interactions. McGraw Hill, New York, pp 85–110Google Scholar
  76. Lindow SE, Panopoulous NJ (1988) Field tests of recombinant ice-Pseudomonas syringae for biological frost control in potato. In: Sussman M, Collins CH, Skinner FA (eds) Proceedings of the first international conference on the release of genetically engineered microorganisms. Academic Press, London, pp 121–138Google Scholar
  77. Lindow SE, Arny DC, Upper CD (1978) Erwinia herbicola: a bacterial ice nucleus active in increasing frost injury to corn. Phytopathology 68:523–527CrossRefGoogle Scholar
  78. Lynch DH, Smith DL (1994) The effects of low temperature stress on two soybean (Glycine max) genotypes when combined with Bradyrhizobium strains of varying geographic origin. Physiol Plant 90:105–113CrossRefGoogle Scholar
  79. Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms. Prentice Hall, Upper Saddle RiverGoogle Scholar
  80. Maki IR, Galyon EL, Chang-Chien M, Cald WDR (1974) Ice nucleation induced by Pseudomonas syringae. Appl Microbiol 28:456–460PubMedPubMedCentralCrossRefGoogle Scholar
  81. Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196CrossRefGoogle Scholar
  82. Malviya MK, Pandey A, Trivedi P, Gupta G, Kumar B (2009) Chitinolytic activity of cold tolerant antagonistic species of Streptomyces isolated from glacial sites of Indian Himalaya. Curr Microbiol 59:502–508CrossRefGoogle Scholar
  83. Malviya MK, Sharma A, Pandey A, Rinu K, Sati P, Palni LMS (2012) Bacillus subtilis NRRL B-30408: a potential inoculant for crops grown under rainfed conditions in the mountains. J Soil Sci Plant Nutr 12:811–824Google Scholar
  84. Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439CrossRefGoogle Scholar
  85. Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting Rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53PubMedCrossRefPubMedCentralGoogle Scholar
  86. McBeath J (1995) Cold tolerant Trichoderma. US Patent #5,418,165Google Scholar
  87. McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–268CrossRefGoogle Scholar
  88. McKay IA, Djordjevic MA (1993) Production and excretion of nod metabolites by Rhizobium leguminosarum bv. Trifolii are disrupted by the same environmental factors that reduce nodulation in the field. Appl Environ Microbiol 59:3385–3392PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mettrick KA, Lamont IL (2009) Different roles for antisigma factors in siderophore signalling pathways of Pseudomonas aeruginosa. Mol Microbiol 74:1257–1271PubMedCrossRefPubMedCentralGoogle Scholar
  90. Mishra M, Goel R (1999) Development of a cold resistant mutant of plant growth promoting Pseudomonas fluorescens and its functional characterization. J Biotechnol 75:71–75PubMedCrossRefPubMedCentralGoogle Scholar
  91. Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Gupta HS (2008) Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:561–568CrossRefGoogle Scholar
  92. Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313CrossRefGoogle Scholar
  93. Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress effects in wheat (Triticum aestivum L.) seedlings by application of psychrotolerant pseudomonads from N.W. Himalayas. Arch Microbiol 193(7):497–513CrossRefGoogle Scholar
  94. Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818PubMedPubMedCentralCrossRefGoogle Scholar
  95. Morales SE, Lewis TA (2006) Transcriptional regulation of the pdt gene cluster of Pseudomonas stutzeri KC involves an AraC/XylS family transcriptional activator (PdtC) and the cognate Siderophore Pyridine-2,6-Bis(Thiocarboxylic acid). Appl Environ Microbiol 72:6994–7002PubMedPubMedCentralCrossRefGoogle Scholar
  96. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedPubMedCentralCrossRefGoogle Scholar
  97. Muryoi N, Sato M, Kaneko S, Kawaahara H, Obata H, Yaish MWF, Griffth M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186:5661–5671PubMedPubMedCentralCrossRefGoogle Scholar
  98. Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg, pp 251–244CrossRefGoogle Scholar
  99. Negi YK, Kumar J, Garg SK (2005) Cold-tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89:2151–2156Google Scholar
  100. Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731PubMedCrossRefPubMedCentralGoogle Scholar
  101. Neilands JD (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedCrossRefPubMedCentralGoogle Scholar
  102. Obata H, Kakinami K, Tanishita J, Hasegawa Y (1990) Identification of new ice-nucleating bacterium and its ice nucleation properties. Agric Biol Chem 54:725–730Google Scholar
  103. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601CrossRefGoogle Scholar
  104. Omar SA (1998) The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14(2):211–219CrossRefGoogle Scholar
  105. Oves-Costales D, Kadi N, Challis GL (2009) The long overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis. Chem Commun (43):6530–6541Google Scholar
  106. Paau MA (1989) Improvement of rhizobium inoculants. Appl Environ Microbiol 55:862–865PubMedPubMedCentralCrossRefGoogle Scholar
  107. Pandey A, Palni LMS (1998) Isolation of Pseudomonas corrugata from Sikkim Himalaya. World J Microbiol Biotechnol 14:11–413CrossRefGoogle Scholar
  108. Pandey A, Sharma E, Palni LMS (1998) Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol Biochem 30:379–384CrossRefGoogle Scholar
  109. Pandey A, Trivedi P, Kumar B, Chaurasia B, Palni LMS (2006a) Soil microbial diversity from the Himalaya: need for documentation and conservation. NBA Scientific Bulletin No. 5, National Biodiversity Authority, ChennaiGoogle Scholar
  110. Pandey A, Trivedi P, Kumar B, Palni LMS (2006b) Characteristics of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107PubMedPubMedCentralCrossRefGoogle Scholar
  111. Partap T (1999) Sustainable land management in marginal mountain areas of the Himalayan region. Mt Res Dev 19:251–260Google Scholar
  112. Poinsot V, Bélanger E, Laberge S, Yang GP, Antoun H, Cloutier J, Treilhou M, Dénarié J, Promé JC, Debellé F (2001) Unusual methyl-branched α, β-unsaturated acyl chain substitutions in the nod factors of an arctic rhizobium, Mesorhizobium sp. strain N33 (Oxytropis arctobia). J Bacteriol 183:3721–3728PubMedPubMedCentralCrossRefGoogle Scholar
  113. Pradhan S, Srinivas T, Pindi PK, Kishore KH, Begum Z, Singh PK, Singh AK, Pratibha M, Yasala AK, Reddy G (2010) Bacterial biodiversity from Roopkund glacier, Himalayan mountain ranges, India. Extremophiles 14:377–395PubMedCrossRefPubMedCentralGoogle Scholar
  114. Prasad S, Manasa P, Buddhi S, Tirunagari P, Begum Z, Rajan S, Shivaji S (2014) Diversity and bioprospective potential (cold-active enzymes) of cultivable marine bacteria from the subarctic glacial fjord, Kongsfjorden. Curr Microbiol 68:233–238PubMedCrossRefPubMedCentralGoogle Scholar
  115. Prévost D, Drouin P, Laberge S, Bertrand A, Cloutier J, Lévesque G (2003) Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can J Bot 81:1153–1161CrossRefGoogle Scholar
  116. Quadri LE, Keating TA, Patel HM, Walsh CT (1999) Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4,2-bisthiazoline synthetase activity from PchD, PchE, and PchF. Biochemistry 38:14941–14954PubMedCrossRefPubMedCentralGoogle Scholar
  117. Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941PubMedCrossRefPubMedCentralGoogle Scholar
  118. Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74:2589–2593PubMedPubMedCentralCrossRefGoogle Scholar
  119. Richardson AE (1994) Soil microorganisms and phosphorous availability. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Soil biota: management in sustainable farming systems. CSIRO, Victoria, pp 50–62Google Scholar
  120. Sahay H, Babu BK, Singh S, Kaushik R, Saxena AK, Arora DK (2013) Cold-active hydrolases producing bacteria from two different sub-glacial Himalayan lakes. J Basic Microbiol 53:703–714PubMedCrossRefPubMedCentralGoogle Scholar
  121. Selvakumar G, Kundu S, Joshi P, Gupta AD, Nazim S, Mishra PK, Gupta HS (2008a) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960CrossRefGoogle Scholar
  122. Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM(MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175CrossRefGoogle Scholar
  123. Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta HS (2009a) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245CrossRefGoogle Scholar
  124. Selvakumar G, Joshi P, Nazim S, Mishra PK, Kundu S, Gupta HS (2009b) Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J Microbiol Biotechnol 25:131–137CrossRefGoogle Scholar
  125. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135CrossRefGoogle Scholar
  126. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefPubMedCentralGoogle Scholar
  127. Subba Rao NS (1986) Soil microorganisms and plant growth. Oxford and IBH Publishing Company, New DelhiGoogle Scholar
  128. Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852CrossRefGoogle Scholar
  129. Tiryaki D, Aydin I, Atici O (2019) Psychrotolerant bacteria isolated from the leaf apoplast of cold-adapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cryobiology 86:111–119CrossRefGoogle Scholar
  130. Tisdale SL, Nelson WL (1975) Soil fertility and fertilizers, 3rd edn. Macmillan, New York, p 694Google Scholar
  131. Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production and plant growth at lower temperatures. Curr Microbiol 56:140–144PubMedCrossRefPubMedCentralGoogle Scholar
  132. Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126CrossRefGoogle Scholar
  133. Venkateswarlu B, Rao AV, Raina P, Ahmad N (1984) Evaluation of phosphorus solubilization by microorganisms isolated from arid soil. J Indian Soc Soil Sci 32:273–277Google Scholar
  134. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899CrossRefGoogle Scholar
  135. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110Google Scholar
  136. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58CrossRefGoogle Scholar
  137. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115CrossRefGoogle Scholar
  138. Wang C, Knill E, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907PubMedCrossRefGoogle Scholar
  139. Wanner BL (1996) Phosphorus assimilation and control of the phosphate regulon. In: Niedhardt FC, Curtiss R III, Ingraham JL, Lin EC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia Coli and Salmonella, cellular and molecular biology, 2nd edn. ASM Press, Washington, pp 1357–1381Google Scholar
  140. Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151CrossRefGoogle Scholar
  141. Wilson M, Lindow SE (1993) Release of recombinant microorganisms. Annu Rev Microbiol 47:913–944PubMedCrossRefGoogle Scholar
  142. Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice-nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73CrossRefGoogle Scholar
  143. Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 52:142–150Google Scholar
  144. Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H, Obata H (2002) Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotechnol Biochem 66:239–247CrossRefGoogle Scholar
  145. Youard ZA, Reimmann C (2010) Stereospecific recognition of pyochelin and enantio-pyochelin by the PchR proteins in fluorescent pseudomonads. Microbiology 156:1772–1782PubMedCrossRefPubMedCentralGoogle Scholar
  146. Yu SO, Brown A, Middleton AJ, Tomczak MM, Walker VK, Davies PL (2010) Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology 61:327–334PubMedCrossRefPubMedCentralGoogle Scholar
  147. Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS et al (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 23–50CrossRefGoogle Scholar
  148. Zhang H, Prithiviraj B, Charles TC, Driscoll BT, Smith DL (2003) Low temperature tolerant Bradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area. Eur J Agron 19:205–213CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Geeta Bhandari
    • 1
  • Niki Nautiyal
    • 1
  • Mukund Sharma
    • 1
  1. 1.Sardar Bhagwan Singh University, BalawalaDehradunIndia

Personalised recommendations