A Constrained Self-adaptive Sparse Combination Representation Method for Abnormal Event Detection

  • Huiyu Mu
  • Ruizhi SunEmail author
  • Li Li
  • Saihua Cai
  • Qianqian Zhang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1120)


Automated abnormal detection system meets the need of society for detecting and locating anomalies and alerting the operators. In this paper, we proposed a constrained self-adaptive sparse combination representation (CSCR). The spatio-temporal video volumes low-level features, which be stacked with multi-scale pyramid, can extract features effectively. The CSCR strategy is robust to learn dictionary and detect abnormal behaviors. Experiments on the published dataset and the comparison to other existing methods demonstrate the certain advantages of our method.


Visual surveillance Abnormal event detection Sparse representation Structure information 


  1. 1.
    Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1446–1453 (2009)Google Scholar
  2. 2.
    Kim, J., Grauman, K.: Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2009)Google Scholar
  3. 3.
    Benezeth, Y., Jodoin, P.M., Saligrama, V.: Abnormality detection using low-level co-occurring events. Pattern Recogn. Lett. 32(3), 423–431 (2011)CrossRefGoogle Scholar
  4. 4.
    Hospedales, T.M., Li, J., Gong, S., et al.: Identifying rare and subtle behaviors: a weakly supervised joint topic model. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2451–2464 (2011)CrossRefGoogle Scholar
  5. 5.
    Wang, X., Hou, Z.Q., et al.: Target scale adaptive robust tracking based on fusion of multilayer convolutional features. Acta Optica Sin. 11, 232–243 (2017)Google Scholar
  6. 6.
    Xu, J.: Unusual event detection in crowded scenes. In: IEEE International Conference on Acoustics (2015)Google Scholar
  7. 7.
    Tran, D., Yuan, J., Forsyth, D.: Video event detection: from subvolume localization to spatiotemporal path search. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 404–416 (2014)CrossRefGoogle Scholar
  8. 8.
    Mahadevan, V., Li, W., Bhalodia, V., et al.: Anomaly detection in crowded scenes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1975–1981 (2010)Google Scholar
  9. 9.
    Xia, L.M., Hu, X.J., Wang, J.: Anomaly detection in traffic surveillance with sparse topic model. J. Cent. South Univ. 25(9), 2245–2257 (2018)CrossRefGoogle Scholar
  10. 10.
    Cai, R.C., Xie, W.H., Hao, Z.F., et al.: Abnormal crowd detection based on multi-scale recurrent neural network. J. Softw. 26(11), 2884–2896 (2015)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 6479–6488 (2018)Google Scholar
  12. 12.
    Zhao, B., Li, F.F., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3313–3320 (2011)Google Scholar
  13. 13.
    Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 FPS in MATLAB. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2720–2727 (2013)Google Scholar
  14. 14.
    Zhao, Y., Yu, Q., Jie, Y., Nikola, K.: Abnormal activity detection using spatio-temporal feature and Laplacian sparse representation. In: International Conference on Neural Information Processing, pp. 410–418 (2015)Google Scholar
  15. 15.
    Tao, Z., Wenjing, J., Baoqing, Y., et al.: MoWLD: a robust motion image descriptor for violence detection. Multimed. Tools Appl. 76(1), 1419–1438 (2017)CrossRefGoogle Scholar
  16. 16.
    Mabrouk, A.B., Zagrouba, E.: Spatio-temporal feature using optical flow based distribution for violence detection. Pattern Recogn. Lett. 92, 62–67 (2017)CrossRefGoogle Scholar
  17. 17.
    Aslan, M., Sengur, A., Xiao, Y., et al.: Shape feature encoding via fisher vector for efficient fall detection in depth-videos. Appl. Soft Comput. 37, 1023–1028 (2015)CrossRefGoogle Scholar
  18. 18.
    Kim, H., Lee, S., et al.: Weighted joint-based human behavior recognition algorithm using only depth information for lowcost intelligent video-surveillance system. Expert Syst. Appl. 45, 131–141 (2016)CrossRefGoogle Scholar
  19. 19.
    Wang, J., Xu, Z.: Crowd anomaly detection for automated video surveillance. In: The 6th International Conference on Imaging for Crime Detection and Prevention, pp. 4–6 (2015)Google Scholar
  20. 20.
    Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 20–25 (2009)Google Scholar
  21. 21.
    Rajkumar, S., Arif, A., Prosad, D.D., Pratim, R.P.: Surveillance scene segmentation based on trajectory classification using supervised learning. In: Proceedings of International Conference on Computer Vision and Image Processing, pp. 261–271 (2016)Google Scholar
  22. 22.
    Ren, W.Y., Li, G.H., Sun, B.L.: Unsupervised kernel learning for abnormal events detection. Vis. Comput. 31, 245–255 (2015)CrossRefGoogle Scholar
  23. 23.
    Simoncelli, E.P., Adelson, E.H.: Noise removal via Bayesian wavelet coring. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 1, pp. 379–382 (1996)Google Scholar
  24. 24.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Engan, K., Aase, S.O., Husy, J.H.: Multi-frame compression: theory and design. Sig. Process. 80(10), 2121–2140 (2000)CrossRefGoogle Scholar
  26. 26.
    Jiang, Z., Lin, Z., Davis, L.S.: Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1697–1704 (2011)Google Scholar
  27. 27.
    Li, N., Wu, X., Xu, D., et al.: Spatio-temporal context analysis within video volumes for anomalous-event detection and localization. Neurocomputing 155, 309–319 (2015)CrossRefGoogle Scholar
  28. 28.
    Lee, H., Battle, A., Raina, R., et al.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems, pp. 801–808 (2007)Google Scholar
  29. 29.
    Horn, B., Schunck, B.: Determining optical flow. In: Technical Symposium East, pp. 319–331 (1981)Google Scholar
  30. 30.
    Uijlings, J., Duta, I.C., Sangineto, E., et al.: Video classification with densely extracted HOG/HOF/MBH features: an evaluation of the accuracy/computational efficiency trade-off. Int. J. Multimed. Inf. Retr. 4(1), 33–44 (2015)CrossRefGoogle Scholar
  31. 31.
    Nguyen, T.V., Phung, D., Gupta, S., et al.: Interactive browsing system for anomaly video surveillance. In: IEEE Eighth International Conference on Intelligent Sensors, pp. 384–389 (2013)Google Scholar
  32. 32.
    Cong, Y., Yuan, J.S., Tang, Y.D.: Video anomaly search in crowded scenes via spatio-temporal motion context. IEEE Trans. Inf. Forensics Secur. 8(10), 1590–1599 (2013)CrossRefGoogle Scholar
  33. 33.
    Alvar, M., Torsello, A., Sanchez-Miralles, A., et al.: Abnormal behavior detection using dominant sets. Mach. Vis. Appl. 25(5), 1351–1368 (2014)CrossRefGoogle Scholar
  34. 34.
    Jin, D., Zhu, S., Wu, S., et al.: Sparse representation and weighted clustering based abnormal behavior detection. In: 2018 24th International Conference on Pattern Recognition, pp. 1574–1579 (2018)Google Scholar
  35. 35.
    Cong, Y., Yuan, J., Liu, J.: Abnormal event detection in crowded scenes using sparse representation. Pattern Recogn. 46(7), 1851–1864 (2013)CrossRefGoogle Scholar
  36. 36.
    Xu, D., Wu, X., Song, D., et al.: Hierarchical activity discovery within spatio-temporal context for video anomaly detection. In: 2013 IEEE International Conference on Image Processing, pp. 3597–3601 (2013)Google Scholar
  37. 37.
    Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3449–3456 (2009)Google Scholar
  38. 38.
    Yuan, Y., Feng, Y., Lu, X.: Statistical hypothesis detector for abnormal event detection in crowded scenes. IEEE Trans. Cybern. 99, 1–12 (2017)Google Scholar
  39. 39.
    Fan, Y., Wen, G., Qiu, S., et al.: Detecting anomalies in crowded scenes via locality-constrained affine subspace coding. J. Electron. Imaging 26(4), 1–9 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Huiyu Mu
    • 1
  • Ruizhi Sun
    • 1
    • 2
    Email author
  • Li Li
    • 1
  • Saihua Cai
    • 1
  • Qianqian Zhang
    • 1
  1. 1.College of Information and Electrical EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Scientific Research Base for Integrated Technologies of Precision Agriculture (Animal Husbandry)The Ministry of AgricultureBeijingChina

Personalised recommendations