Advertisement

Effect of Passivating and Metallization Layers on Low Energy Proton Induced Single-Event Upset

  • Ruiqiang Song
  • Jinjin ShaoEmail author
  • Bin Liang
  • Yaqing Chi
  • Jianjun Chen
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1146)

Abstract

Using Monte Carlo and TCAD simulation, we investigate the effect of passivating and metallization layers on low energy proton induced SEU in the commercial SRAM cell. Simulation results indicate metallization layers and tungsten contacts significantly reduce proton energy and enhance the energy distribution. Therefore, they can decrease the SEU percentage of the commercial SRAM cell.

Keywords

Single-event upset Low energy proton Passivating layer Metallization layer 

References

  1. 1.
    Du, T., ChaoHui, H., YongHong, L., Hang, Z., Cen, X., JinXin, Z.: Soft error reliability in advanced CMOS technologies-trends and challenges. Sci. China Tech. Sci. 57(9), 1846–1857 (2014)CrossRefGoogle Scholar
  2. 2.
    Massengill, L.W., Bhuva, B.L., Holman, W.T., Alles, M.L., Loveless, T.D.: Technology scaling and soft error reliability. In: Proceedings of IRPS, 3.C.1 (2012)Google Scholar
  3. 3.
    Dodd, P.E., Shaneyfelt, M.R., Felix, J.A.: Production and propagation of single-event transients in high-speed digital logic ICs. IEEE Trans. Nucl. Sci. 51(6), 3278–3284 (2004)CrossRefGoogle Scholar
  4. 4.
    Black, J.D., Dodd, P.E., Warren, K.M.: Physics of multiple-node charge collection and impacts on single-event characterization and soft error rate prediction. IEEE Trans. Nucl. Sci. 60(3), 1836–1851 (2013)CrossRefGoogle Scholar
  5. 5.
    Uznanski, S., Gasiot, G., Roche, P., Autran, J.L., Tavernier, C.: Characterizing SRAM single event upset in terms of single and multiple node charge collection. IEEE Trans. Nucl. Sci. 55(6), 2943–2947 (2009)Google Scholar
  6. 6.
    Avner, H., Joseph, B., David, D., Eitan, K., Nati, R., Shimshon, R.: Single event hard errors in SRAM under heavy ion irradiation. IEEE Trans. Nucl. Sci. 61(5), 2702–2710 (2014)CrossRefGoogle Scholar
  7. 7.
    Indranil, C., et al.: Single-event charge collection and upset in 40-nm dual- and triple-well bulk CMOS SRAMs. IEEE Trans. Nucl. Sci. 58(6), 2761–2767 (2011)CrossRefGoogle Scholar
  8. 8.
    Correas, V., et al.: Prediction of multiple cell upset induced by heavy ions in a 90 nm Bulk SRAM. IEEE Trans. Nucl. Sci. 56(4), 2050–2055 (2009)CrossRefGoogle Scholar
  9. 9.
    Heidel, D.F., Marshall, P.W., LaBel, K.A., Schwank, J.R., Rodbell, K.P., Hakey, M.C.: Low energy proton single-event-upset test results on 65 nm SOI SRAM. IEEE Trans. Nucl. Sci. 55(6), 3394–3400 (2008)CrossRefGoogle Scholar
  10. 10.
    Rodbell, K.P., Heidel, D.F., Tang, H.K., Gordon, M.S., Oldiges, P., Murray, C.E.: Multiple cell upsets as the key contribution to the total SER of 65 nm CMOS SRAMs and its dependence on well engineering. IEEE Trans. Nucl. Sci. 54(6), 2474–2479 (2007)CrossRefGoogle Scholar
  11. 11.
    Liu, H.Y., Liu, M.S., Hughes, H.L.: Proton induced single event upset in 6 T SOI SRAMs. IEEE Trans. Nucl. Sci. 53(6), 3502–3505 (2006)CrossRefGoogle Scholar
  12. 12.
    Song, R.Q., Chen, S.M., Du, Y.K., Huang, P.C., Chen, J.J., Chi, Y.Q.: PABAM a physics-based analytical model to estimate bipolar amplification effect induced collected charge at circuit-level. IEEE Trans. Device Mater. Rel. 15(4), 595–603 (2015)CrossRefGoogle Scholar
  13. 13.
    Song, R.Q., Chen, S.M., He, Y.B., Du, Y.K.: Flip-flops soft error rate evaluation approach considering internal single-event transient. Sci. China Inf. Sci. 58(6), 062403 (2015)CrossRefGoogle Scholar
  14. 14.
    He, Y.B., Chen, S.M.: Experimental verification of the parasitic bipolar amplification effect in single event transient. Chin. Phys. B 23(7), 079401 (2014)CrossRefGoogle Scholar
  15. 15.
    Qin, J.R., Chen, S.M., Li, D.W., Liang, B., Liu, B.W.: Temperature and drain bias dependence of single event transient in 25 nm FinFET technology. Chin. Phys. B 21(8), 089401 (2012)CrossRefGoogle Scholar
  16. 16.
    Ruiqiang, S., et al.: Experimental characterization of the dominant multiple nodes charge collection mechanism in metal oxide-semiconductor transistors. Appl. Phys. Lett. 110, 232106 (2017)CrossRefGoogle Scholar
  17. 17.
    Song, R.Q., Chen, S.M., Liang, B., Chi, Y.Q., Chen, J.J.: Modeling the impact of process and operation variations on the soft error rate of digital circuits. Sci. China Inf. Sci. 60(12), 129402 (2017)CrossRefGoogle Scholar
  18. 18.
    Segr, E., Bethe, H., Ashkin, J.: Experimental nuclear physics. Annual Report of China Institute of Atomic Energy (1996)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ruiqiang Song
    • 1
  • Jinjin Shao
    • 1
    Email author
  • Bin Liang
    • 1
  • Yaqing Chi
    • 1
  • Jianjun Chen
    • 1
  1. 1.College of ComputerNational University of Defense TechnologyChangshaChina

Personalised recommendations