Advertisement

Tuning of Fractional Order Controller and Prefilter in MIMO Robust Motion Control: SCARA Robot

  • Mohamed AllaguiEmail author
  • Najah Yousfi
  • Nabil Derbel
  • Pierre Melchior
Chapter
  • 2 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 270)

Abstract

Quite recently, fractional approaches was greatly used in control engineering area. Several methodologies based on fractional controllers tuning has been treated. In this work, a multi-input multi-output (MIMO) quantitative feedback theory (QFT) method is mixed with a fractional order PD\(^{\mu }\) controller and a fractional prefilter to govern multivariable systems. Each obtained sub-systems from the MIMO QFT technique is controlled independently. A new analytic tuning method of fractional order controller is developed in the aim to ensure stability and robustness. After the controller tuning a fractional order prefilter is designed and optimized to reach the desired performances. The proposed method effectiveness will be tested and evaluated based on a real robot model.

Keywords

Control Fractional calculus Fractional order controller Fractional prefilter MIMO processes Robotic Robustness 

References

  1. 1.
    Abel, N.: Solution de quelques problemes a l’aide d’integrales definies. Gesammelte mathematische Werke 1, 11–27 (1881)Google Scholar
  2. 2.
    Bagley, R.L., Calico, R.A.: Fractional-order state equations for the control of viscoelastic damped structures. J. Guid. Control Dyn. 14, 304–311 (1991)CrossRefGoogle Scholar
  3. 3.
    Bagley, R.L., Torvik, P.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51, 294–298 (1984)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Xue, D.: A comparative introduction of four fractional order controllers. In: 4th IEEE World Congress on Intelligent Control and Automatic (WCICA02) (2002)Google Scholar
  5. 5.
    Dulf, E.-H., Timis, D., Muresan, C.-I.: Robust fractional order controllers for distributed systems. Acta Polytech. Hung. 14, 163–176 (2017)Google Scholar
  6. 6.
    Euler, L.: Foundations of Differential Calculus. Springer, New York (2000)Google Scholar
  7. 7.
    Garcia-Sanz, M., Egana, I., Villanueva, J.: Interval modelling of SCARA robot for robust control. In: 10th Mediterranean Conference on Control and Automation - MED (2002)Google Scholar
  8. 8.
    Horowitz, I.: Synthesis of Feedback Systems. Academic Press, New York (1963)zbMATHGoogle Scholar
  9. 9.
    Horowitz, I.: Survey of quantitative feedback theory (qft). Int. J. Control 53, 255–291 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Keyser, R.D., Muresan, C.I., Ionescu, C.M.: A novel auto-tuning method for fractional order pi/pd controllers. ISA Trans. 62, 268–275 (2016)Google Scholar
  11. 11.
    Letnikov, A.: Theory of differentiation of fractional order. Mat. Sbornik 3, 1–68 (1868)Google Scholar
  12. 12.
    Liouville, J.: Memoire sur quelques questions de geometrie et de mecanique, et sur un nouveau genre pour resoudre ces questions. J. Ec. Polytech. 13, 1–69 (1832)Google Scholar
  13. 13.
    Luo, Y., Chen, Y.Q., Wang, C.Y., Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20(7), 823–831 (2010)CrossRefGoogle Scholar
  14. 14.
    Mainardi, F.: Fractional relaxation in anelastic solids. J. Alloys Compd. 211(212), 534–538 (1994)CrossRefGoogle Scholar
  15. 15.
    Melchior, P., Inarn, C., Oustaloup, A.: Path tracking design by fractional prefilter extension to square MIMO systems. In: Proceedings of the ASME 2009 International Design Engineering Technical Conference and Computers and Information in Engineering Conference (2009)Google Scholar
  16. 16.
    Melchior, P., Robin, G., L’Hostis, S., Levron, F.: Non integer order movement generation in path planning. In: CESA’98 IMACS-IEEE/SMC Multiconference Computational Engineering in Systems Applications (1998)Google Scholar
  17. 17.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)Google Scholar
  18. 18.
    Muresan, C.I.: Fractional calculus: from simple control solutions to complex. In: Nonlinear Systems and Complexity, vol. 6, pp. 113–134. Springer, Cham (2014)Google Scholar
  19. 19.
    Muresan, C.-I., Folea, S., Mois, G., Dulf, E.-H.: Development and implementation of an fpga based fractional order controller for a DC motor. Mechatronics 23, 798–804 (2013)CrossRefGoogle Scholar
  20. 20.
    Osler, T.J.: The integral analog of the leibniz rule. Math. Comp. 26, 903–915 (1972)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Oustaloup, A.: Systèmes asservis linéaires d’ordre fractionnaire. Masson, Paris (1983)Google Scholar
  22. 22.
    Oustaloup, A.: La commande CRONE. Hermes, Paris (1991)zbMATHGoogle Scholar
  23. 23.
    Oustaloup, A.: La dérivation non entière: théorie, synthèse et applications. Hermes, Paris (1995)zbMATHGoogle Scholar
  24. 24.
    Pan, I., Das, S., Gupta, A.: Handling packet dropouts and random delays for unstable delayed processes in ncs by optimal tuning of \(pi^{\lambda }d^{\mu }\) controllers with evolutionary algorithms. ISA Trans. 50, 557–572 (2011)CrossRefGoogle Scholar
  25. 25.
    Patil, M.D., Nataraj, P., Vyawahare, V.: Design of robust fractional-order controller and prefilters for multivariable system using interval constraint satisfaction technique. Int. J. Dynam. Control 5, 145–158 (2016)Google Scholar
  26. 26.
    Podlubny, I.: Fractional order systems and \(pi^{\lambda }d^{\mu }\) controllers. IEEE Trans. Autom. Control 44, 208–214 (1999)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Riemann, B.: Versuch einer allgemeinen auffassung der integration und differentiation. Gesammelte Mathematische Werke und Wissenschaftlicher 1, 331–344 (1876)Google Scholar
  28. 28.
    Ross, B.: Fractional calculus and its applications. In: Proceedings of the International Conference held at the University of New Haven. Springer, New York (1974)Google Scholar
  29. 29.
    Xue, D., Chen, Y.: A comparative introduction of four fractional order controllers. In: 4th IEEE World Congress on Intelligent Control and Automation (2002)Google Scholar
  30. 30.
    Xue, D., Zhao, C., Chen, Y.Q.: Fractional order PID control a DC-motor with elastic shaft: a case study. In: Proceedings of the American Control Conference (2006)Google Scholar
  31. 31.
    Yousfi, N., Melchior, P., Rekik, C., Derbel, N., Oustaloup, A.: Comparison between h\(_{\infty }\) and crone control combined with qft approach to control multivariable systems in path tracking design. Int. J. Comput. Appl. 45, 1–9 (2012a)Google Scholar
  32. 32.
    Yousfi, N., Melchior, P., Rekik, C., Derbel, N., Oustaloup, A.: Path tracking design based on Davidson-Cole prefilter using a centralized crone controller applied to multivariable systems. Nonlinear Dyn. 71, 701–712 (2013)Google Scholar
  33. 33.
    Yousfi, N., Melchior, P., Rekik, C., Derbel, N., Oustaloup, A.: Path tracking design by fractional prefilter using a combined qft/h\(_{\infty }\) design for tdof uncertain feedback systems. J. Appl. Nonlinear Dyn. 1, 239–261 (2012b)Google Scholar
  34. 34.
    Zhao, C., Yang, D., Xue, Q.C.: A fractional order PID tuning algorithm for a class of fractional order plants. In: IEEE International Conference on Mechatronics and Automation (2005)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mohamed Allagui
    • 1
    Email author
  • Najah Yousfi
    • 1
  • Nabil Derbel
    • 1
  • Pierre Melchior
    • 2
  1. 1.CEM Laboratory in Control & Energy Management, ENISUniversity of SfaxSfaxTunisia
  2. 2.IMS-UMR 5218 CNRS, University of Bordeaux-IPB-Talence cedexBordeauxFrance

Personalised recommendations