Skip to main content

Prospective Advances in Non-coding RNAs Investigation

  • Chapter
  • First Online:
Non-coding RNAs in Cardiovascular Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1229))

Abstract

Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.

The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R. Towards a complete map of the human long non-coding RNA transcriptome. Resource. 2018;8(67):276.

    Google Scholar 

  2. Liu G, Mattick JS, Taft RJ. A meta-analysis of the genomic and transcriptomic composition of complex life. Cell Cycle. 2013;12(13):2061–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861.

    Article  CAS  PubMed  Google Scholar 

  5. Rinn JL, Euskirchen G, Bertone P, Martone R, Luscombe NM, Hartman S, Harrison PM, Nelson FK, Miller P, Gerstein M. The transcriptional activity of human chromosome 22. Genes Dev. 2003;17(4):529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras TR. Large-scale transcriptional activity in chromosomes 21 and 22. Science. 2002;296(5569):916–9.

    Article  CAS  PubMed  Google Scholar 

  7. Consortium F, I RGERGP, Team I. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420(6915):563.

    Article  Google Scholar 

  8. Huang M-S, Zhu T, Li L, Xie P, Li X, Zhou H-H, Liu Z-Q. LncRNAs and CircRNAs from the same gene: masterpieces of RNA splicing. Cancer Lett. 2018;415:49–57.

    Article  CAS  PubMed  Google Scholar 

  9. Fang S, Zhang L, Guo J, Niu Y, Wu Y, Li H, Zhao L, Li X, Teng X, Sun X. NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 2017;46(D1):D308–14.

    Article  PubMed Central  CAS  Google Scholar 

  10. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220(2):126–39.

    Article  CAS  PubMed  Google Scholar 

  11. Hüttenhofer A, Vogel J. Experimental approaches to identify non-coding RNAs. Nucleic Acids Res. 2006;34(2):635–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wang J, Samuels DC, Zhao S, Xiang Y, Zhao Y-Y, Guo Y. Current research on non-coding ribonucleic acid (RNA). Genes. 2017;8(12):366.

    Article  PubMed Central  CAS  Google Scholar 

  13. Das A, Samidurai A, Salloum FN. Deciphering non-coding RNAs in cardiovascular health and disease. Front Cardiovasc Med. 2018;5:73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tang T-H, Bachellerie J-P, Rozhdestvensky T, Bortolin M-L, Huber H, Drungowski M, Elge T, Brosius J, Hüttenhofer A. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci. 2002;99(11):7536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marker C, Zemann A, Terhörst T, Kiefmann M, Kastenmayer JP, Green P, Bachellerie J-P, Brosius J, Hüttenhofer A. Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr Biol. 2002;12(23):2002–13.

    Google Scholar 

  16. Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev. 2001;15(13):1637–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rivas E, Klein RJ, Jones TA, Eddy SR. Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol. 2001;11(17):1369–73.

    Article  CAS  PubMed  Google Scholar 

  18. Hüttenhofer A, Kiefmann M, Meier-Ewert S, O’Brien J, Lehrach H, Bachellerie JP, Brosius J. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J. 2001;20(11):2943–53.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EGH, Margalit H, Altuvia S. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol. 2001;11(12):941–50.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao G. Significance of non-coding circular RNAs and micro RNAs in the pathogenesis of cardiovascular diseases. J Med Genet. 2018;55(11):713–20.

    Article  CAS  PubMed  Google Scholar 

  21. Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther. 2018;196:15–43. 

    Google Scholar 

  22. Vea A, Llorente-Cortes V, de Gonzalo-Calvo D. Circular RNAs in Blood. In: Xiao J, editor. Circular Rnas: biogenesis and functions, Advances in experimental medicine and biology, vol. 1087. Cham: Springer; 2018. p. 119–30.

    Chapter  Google Scholar 

  23. Quan G, Li J. Circular RNAs: biogenesis, expression and their potential roles in reproduction. J Ovarian Res. 2018;11(1):9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner D-M, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704.

    Article  CAS  PubMed  Google Scholar 

  25. Islas JF, Moreno-Cuevas JE. A MicroRNA perspective on cardiovascular development and diseases: an update. Int J Mol Sci. 2018;19(7):2075.

    Article  PubMed Central  CAS  Google Scholar 

  26. Abbas Q, Raza SM, Biyabani AA, Jaffar MA. A review of computational methods for finding non-coding RNA genes. Genes (Basel). 2016;7(12):113.

    Article  CAS  Google Scholar 

  27. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M. A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem. 2013;288(16):11216–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Li Z, Yang B. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun. 2010;391(1):73–7.

    Article  CAS  PubMed  Google Scholar 

  30. Bialek S, Gorko D, Zajkowska A, Koltowski L, Grabowski M, Stachurska A, Kochman J, Sygitowicz G, Malecki M, Opolski G, Sitkiewicz D. Release kinetics of circulating miRNA-208a in the early phase of myocardial infarction. Kardiol Pol. 2015;73(8):613–9.

    Article  PubMed  Google Scholar 

  31. Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, Dong X, Qin S, Zhang C. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond). 2010;119(2):87–95.

    Article  CAS  Google Scholar 

  32. Coskunpinar E, Cakmak HA, Kalkan AK, Tirya-kioglu NO, Erturk M, Ongen Z. Circulating miR-221-3p as a novel marker for early prediction of acute myocardial infarction. Gene. 2016;591(1):90–6.

    Google Scholar 

  33. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a biomarker of myocardial injury. Clin Chem. 2009;55(11):1944–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659–66.

    Article  PubMed  CAS  Google Scholar 

  35. Chan JH, Lim S, Wong WS. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol. 2006;33(5–6):533–40.

    Article  CAS  PubMed  Google Scholar 

  36. Crooke ST. Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta. 1999;1489(1):31–44.

    Article  CAS  PubMed  Google Scholar 

  37. Crooke ST, Wang S, Vickers TA, Shen W, Liang XH. Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol. 2017;35(3):230–7.

    Article  CAS  PubMed  Google Scholar 

  38. Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35(3):222–9.

    Article  CAS  PubMed  Google Scholar 

  39. Laina A, Gatsiou A, Georgiopoulos G, Stamatelopoulos K, Stellos K. RNA therapeutics in cardiovascular precision medicine. Front Physiol. 2018;9:953.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46(4):1584–600.

    Article  CAS  PubMed  Google Scholar 

  41. Dominski Z, Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci U S A. 1993;90(18):8673–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 2010;9(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ. Argonaute2 is the catalytic engine of mammalian RNAi. Science (New York, NY). 2004;305(5689):1437–41.

    Article  CAS  Google Scholar 

  44. Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14(7):447–59.

    Article  CAS  PubMed  Google Scholar 

  45. Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457(7228):396–404.

    Article  CAS  PubMed  Google Scholar 

  46. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003;5(9):834–9.

    Article  CAS  PubMed  Google Scholar 

  47. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.

    Article  CAS  PubMed  Google Scholar 

  48. Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4:e252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13(8):622–38.

    Article  CAS  PubMed  Google Scholar 

  50. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.

    Article  CAS  PubMed  Google Scholar 

  51. Bernardo BC, Gao XM, Winbanks CE, Boey EJ, Tham YK, Kiriazis H, Gregorevic P, Obad S, Kauppinen S, Du XJ, Lin RC, McMullen JR. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci U S A. 2012;109(43):17615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y, Fernandez-Hernando C, Fisher EA, Moore KJ. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121(7):2921–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM, Hansen HF, Koch T, Pappin D, Hannon GJ, Kauppinen S. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet. 2011;43(4):371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.

    Article  CAS  PubMed  Google Scholar 

  55. Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15(6):385–403.

    Article  CAS  PubMed  Google Scholar 

  56. Mousa SA, Mousa SS. Current status of vascular endothelial growth factor inhibition in age-related macular degeneration. BioDrugs: clinical immunotherapeutics, biopharmaceuticals and. Gene Ther. 2010;24(3):183–94.

    CAS  Google Scholar 

  57. Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  58. Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, Hall T, Troquay RP, Turner T, Visseren FL, Wijngaard P, Wright RS, Kastelein JJ. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376(15):1430–40.

    Article  CAS  PubMed  Google Scholar 

  59. Crooke ST, Geary RS. Clinical pharmacological properties of mipomersen (Kynamro), a second generation antisense inhibitor of apolipoprotein B. Br J Clin Pharmacol. 2013;76(2):269–76.

    Article  CAS  PubMed  Google Scholar 

  60. Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, Lu Y, Tang ZZ, Zhang H, Hindy G, Masca N, Stirrups K, Kanoni S, Do R, Jun G, Hu Y, Kang HM, Xue C, Goel A, Farrall M, Duga S, Merlini PA, Asselta R, Girelli D, Olivieri O, Martinelli N, Yin W, Reilly D, Speliotes E, Fox CS, Hveem K, Holmen OL, Nikpay M, Farlow DN, Assimes TL, Franceschini N, Robinson J, North KE, Martin LW, DePristo M, Gupta N, Escher SA, Jansson JH, Van Zuydam N, Palmer CN, Wareham N, Koch W, Meitinger T, Peters A, Lieb W, Erbel R, Konig IR, Kruppa J, Degenhardt F, Gottesman O, Bottinger EP, O’Donnell CJ, Psaty BM, Ballantyne CM, Abecasis G, Ordovas JM, Melander O, Watkins H, Orho-Melander M, Ardissino D, Loos RJ, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Deloukas P, Schunkert H, Wilson JG, Kooperberg C, Rich SS, Tracy RP, Lin DY, Altshuler D, Gabriel S, Nickerson DA, Jarvik GP, Cupples LA, Reiner AP, Boerwinkle E, Kathiresan S. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. New England J Med. 2014;371(1):22–31.

    Article  CAS  Google Scholar 

  61. Huff MW, Hegele RA. Apolipoprotein C-III: going back to the future for a lipid drug target. Circ Res. 2013;112(11):1405–8.

    Article  CAS  PubMed  Google Scholar 

  62. Baldi S, Bonnet F, Laville M, Morgantini C, Monti L, Hojlund K, Ferrannini E, Natali A. Influence of apolipoproteins on the association between lipids and insulin sensitivity: a cross-sectional analysis of the RISC study. Diabetes Care. 2013;36(12):4125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Graham MJ, Lee RG, Brandt TA, Tai LJ, Fu W, Peralta R, Yu R, Hurh E, Paz E, McEvoy BW, Baker BF, Pham NC, Digenio A, Hughes SG, Geary RS, Witztum JL, Crooke RM, Tsimikas S. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377(3):222–32.

    Article  CAS  PubMed  Google Scholar 

  64. Dewey FE, Gusarova V, O’Dushlaine C, Gottesman O, Trejos J, Hunt C, Van Hout CV, Habegger L, Buckler D, Lai KM, Leader JB, Murray MF, Ritchie MD, Kirchner HL, Ledbetter DH, Penn J, Lopez A, Borecki IB, Overton JD, Reid JG, Carey DJ, Murphy AJ, Yancopoulos GD, Baras A, Gromada J, Shuldiner AR. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374(12):1123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Capoulade R, Chan KL, Yeang C, Mathieu P, Bosse Y, Dumesnil JG, Tam JW, Teo KK, Mahmut A, Yang X, Witztum JL, Arsenault BJ, Despres JP, Pibarot P, Tsimikas S. Oxidized phospholipids, lipoprotein(a), and progression of calcific aortic valve stenosis. J Am Coll Cardiol. 2015;66(11):1236–46.

    Article  CAS  PubMed  Google Scholar 

  66. Wiesner P, Tafelmeier M, Chittka D, Choi SH, Zhang L, Byun YS, Almazan F, Yang X, Iqbal N, Chowdhury P, Maisel A, Witztum JL, Handel TM, Tsimikas S, Miller YI. MCP-1 binds to oxidized LDL and is carried by lipoprotein(a) in human plasma. J Lipid Res. 2013;54(7):1877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Robciuc MR, Maranghi M, Lahikainen A, Rader D, Bensadoun A, Oorni K, Metso J, Minicocci I, Ciociola E, Ceci F, Montali A, Arca M, Ehnholm C, Jauhiainen M. Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids. Arterioscler Thromb Vasc Biol. 2013;33(7):1706–13.

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez CR, Seman LJ, Ordovas JM, Jenner J, Genest MS Jr, Wilson PW, Schaefer EJ. Lipoprotein(a) and coronary heart disease. Chem Phys Lipids. 1994;67-68:389–98.

    Article  CAS  PubMed  Google Scholar 

  69. Waldeyer C, Makarova N, Zeller T, Schnabel RB, Brunner FJ, Jorgensen T, Linneberg A, Niiranen T, Salomaa V, Jousilahti P, Yarnell J, Ferrario MM, Veronesi G, Brambilla P, Signorini SG, Iacoviello L, Costanzo S, Giampaoli S, Palmieri L, Meisinger C, Thorand B, Kee F, Koenig W, Ojeda F, Kontto J, Landmesser U, Kuulasmaa K, Blankenberg S. Lipoprotein(a) and the risk of cardiovascular disease in the European population: results from the BiomarCaRE consortium. Eur Heart J. 2017;38(32):2490–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sugihara C, Freemantle N, Hughes SG, Furniss S, Sulke N. The effect of C-reactive protein reduction with a highly specific antisense oligonucleotide on atrial fibrillation assessed using beat-to-beat pacemaker Holter follow-up. J Interv Card Electrophysiol. 2015;43(1):91–8.

    Article  PubMed  Google Scholar 

  71. Noveck R, Stroes ES, Flaim JD, Baker BF, Hughes S, Graham MJ, Crooke RM, Ridker PM. Effects of an antisense oligonucleotide inhibitor of C-reactive protein synthesis on the endotoxin challenge response in healthy human male volunteers. J Am Heart Assoc. 2014;3(4):e001084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Pena JM, MacFadyen J, Glynn RJ, Ridker PM. High-sensitivity C-reactive protein, statin therapy, and risks of atrial fibrillation: an exploratory analysis of the JUPITER trial. Eur Heart J. 2012;33(4):531–7.

    Article  CAS  PubMed  Google Scholar 

  73. Liu J, Fang PH, Dibs S, Hou Y, Li XF, Zhang S. High-sensitivity C-reactive protein as a predictor of atrial fibrillation recurrence after primary circumferential pulmonary vein isolation. Pacing Clin Electrophysiol. 2011;34(4):398–406.

    Article  PubMed  Google Scholar 

  74. Marcus GM, Smith LM, Ordovas K, Scheinman MM, Kim AM, Badhwar N, Lee RJ, Tseng ZH, Lee BK, Olgin JE. Intracardiac and extracardiac markers of inflammation during atrial fibrillation. Heart Rhythm. 2010;7(2):149–54.

    Article  PubMed  Google Scholar 

  75. Boos CJ. Relationship between C-reactive protein concentrations during glucocorticoid therapy and recurrent atrial fibrillation. Eur Heart J. 2004;25(19):1761–2.

    Article  PubMed  Google Scholar 

  76. Strandberg TE, Tilvis RS. C-reactive protein, cardiovascular risk factors, and mortality in a prospective study in the elderly. Arterioscler Thromb Vasc Biol. 2000;20(4):1057–60.

    Article  CAS  PubMed  Google Scholar 

  77. Aguirre A, Sancho-Martinez I, Belmonte JCI. Reprogramming toward heart regeneration: stem cells and beyond. Cell Stem Cell. 2013;12(3):275–84.

    Article  CAS  PubMed  Google Scholar 

  78. Giacca M, Zacchigna S. Harnessing the microRNA pathway for cardiac regeneration. J Mol Cell Cardiol. 2015;89:68–74.

    Article  CAS  PubMed  Google Scholar 

  79. Clevers H. Stem cells, asymmetric division and cancer. Nat Genet. 2005;37(10):1027.

    Article  CAS  PubMed  Google Scholar 

  80. De Windt LJ, Giacca M. Non-coding RNA function in stem cells and regenerative medicine. Non-coding RNA Res. 2018;3(2):39.

    Article  Google Scholar 

  81. Luginbühl J, Sivaraman DM, Shin JW. The essentiality of non-coding RNAs in cell reprogramming. Non-coding RNA Res. 2017;2(1):74–82.

    Article  Google Scholar 

  82. Pijlman GP, Funk A, Kondratieva N, Leung J, Torres S, van der Aa L, Liu WJ, Palmenberg AC, Shi P-Y, Hall RA. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008;4(6):579–91.

    Article  CAS  PubMed  Google Scholar 

  83. Daou N, Lecolle S, Lefebvre S, della Gaspera B, Charbonnier F, Chanoine C, Armand A-S. A new role for the calcineurin/NFAT pathway in neonatal myosin heavy chain expression via the NFATc2/MyoD complex during mouse myogenesis. Development. 2013;140(24):4914–25.

    Article  CAS  PubMed  Google Scholar 

  84. Gonçalves TJ, Armand A-S. Non-coding RNAs in skeletal muscle regeneration. Non-coding RNA Res. 2017;2(1):56–67.

    Article  Google Scholar 

  85. Martinet C, Monnier P, Louault Y, Benard M, Gabory A, Dandolo L. H19 controls reactivation of the imprinted gene network during muscle regeneration. Development. 2016;143(6):962–71.

    Article  CAS  PubMed  Google Scholar 

  86. Santolini M, Ferry A, Hakim V, Maire P. Six homeoproteins and a linc-RNA at the fast MYH locus lock fast myofiber terminal phenotype. PLoS Genet. 2014;10(5):e1004386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17(5):662–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Choong OK, Lee DS, Chen C-Y, Hsieh PC. The roles of non-coding RNAs in cardiac regenerative medicine. Non-coding RNA Res. 2017;2(2):100–10.

    Article  Google Scholar 

  89. Ebrahimi B. In vivo reprogramming for heart regeneration: a glance at efficiency, environmental impacts, challenges and future directions. J Mol Cell Cardiol. 2017;108:61–72.

    Article  CAS  PubMed  Google Scholar 

  90. Eschenhagen T, Bolli R, Braun T, Field LJ, Fleischmann BK, Frisén J, Giacca M, Hare JM, Houser S, Lee RT. Cardiomyocyte regeneration: a consensus statement. Circulation. 2017;136(7):680–6.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Garreta E, Prado P, Belmonte JCI, Montserrat N. Non-coding microRNAs for cardiac regeneration: exploring novel alternatives to induce heart healing. Non-coding RNA Res. 2017;2(2):93–9.

    Article  Google Scholar 

  92. Roberts EG, Lee EL, Backman D, Buczek-Thomas JA, Emani S, Wong JY. Engineering myocardial tissue patches with hierarchical structure–function. Ann Biomed Eng. 2015;43(3):762–73.

    Article  PubMed  Google Scholar 

  93. Di Mauro V, Barandalla-Sobrados M, Catalucci D. The noncoding-RNA landscape in cardiovascular health and disease. Non-coding RNA Res. 2018;3(1):12–9.

    Article  CAS  Google Scholar 

  94. Ali I, Salim K, A Rather M, A Wani W, Haque A. Advances in nano drugs for cancer chemotherapy. Curr Cancer Drug Targets. 2011;11(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  95. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19(3):311–30.

    Article  CAS  PubMed  Google Scholar 

  97. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.

    Article  CAS  PubMed  Google Scholar 

  98. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine—challenge and perspectives. Angew Chem Int Ed. 2009;48(5):872–97.

    Article  CAS  Google Scholar 

  99. Biray Avci C, Ozcan I, Balci T, Ozer O, Gunduz C. Design of polyethylene glycol-polyethylenimine nanocomplexes as non-viral carriers: mir-150 delivery to chronic myeloid leukemia cells. Cell Biol Int. 2013;37(11):1205–14.

    CAS  PubMed  Google Scholar 

  100. Wu Y, Crawford M, Mao Y, Lee RJ, Davis IC, Elton TS, Lee LJ, Nana-Sinkam SP. Therapeutic delivery of MicroRNA-29b by cationic Lipoplexes for Lung Cancer. Mol Ther Nucleic Acids. 2013;2:e84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Di Mauro V, Iafisco M, Salvarani N, Vacchiano M, Carullo P, Ramirez-Rodriguez GB, Patricio T, Tampieri A, Miragoli M, Catalucci D. Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs. Nanomedicine (Lond). 2016;11(8):891–906.

    Article  CAS  Google Scholar 

  102. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, Van Rooij E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pan Z-w, Lu Y-j, Yang B-f. MicroRNAs: a novel class of potential therapeutic targets for cardiovascular diseases. Acta Pharmacol Sin. 2010;31(1):1.

    Article  PubMed  CAS  Google Scholar 

  104. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980.

    Article  CAS  PubMed  Google Scholar 

  105. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207(8):1589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhong X, Chung AC, Chen H-Y, Meng X-M, Lan HY. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol. 2011;22(9):1668–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fleissner F, Jazbutyte V, Fiedler J, Galuppo P, Mayr M, Ertl G, Bauersachs J, Thum T. The endogenous NO synthase inhibitor asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA dependent mechanism. Cardiovasc Res. 2010;87:138–43.

    Google Scholar 

  108. Kumarswamy R, Volkmann I, Jazbutyte V, Dangwal S, Park D-H, Thum T. Transforming growth factor-β–induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler Thromb Vasc Biol. 2012;32(2):361–9.

    Article  CAS  PubMed  Google Scholar 

  109. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 2007;100(11):1579–88.

    Article  CAS  PubMed  Google Scholar 

  110. Anderson ME, Mohler PJ. MicroRNA may have macro effect on sudden death. Nat Med. 2007;13(4):410.

    Article  CAS  PubMed  Google Scholar 

  111. Thum T, Galuppo P, Kneitz S, Wolf C, Van Laake L, Engelhardt S, Ertl G, Bauersachs J. 40 MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Eur J Heart Fail Suppl. 2007;6:1–1.

    Google Scholar 

  112. Roy S, Khanna S, Hussain S-RA, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009;82(1):21–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol. 2007;170(6):1831–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896.

    Article  PubMed  CAS  Google Scholar 

  115. Adam O, Löhfelm B, Thum T, Gupta SK, Puhl S-L, Schäfers H-J, Böhm M, Laufs U. Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol. 2012;107(5):278.

    Article  PubMed  CAS  Google Scholar 

  116. Yan M, Chen C, Gong W, Yin Z, Zhou L, Chaugai S, Wang DW. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res. 2014;105(3):340–52.

    Article  PubMed  CAS  Google Scholar 

  117. Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee K-H, Ma Q, Kang PM, Golub TR. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol. 2009;29(8):2193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M-L, Segnalini P, Gu Y, Dalton ND. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613.

    Article  CAS  PubMed  Google Scholar 

  119. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13(4):486.

    Article  CAS  PubMed  Google Scholar 

  120. Sayed D, Hong C, Chen I-Y, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res. 2007;100(3):416–24.

    Article  CAS  PubMed  Google Scholar 

  121. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129(2):303–17.

    Article  CAS  PubMed  Google Scholar 

  122. Costantini DL, Arruda EP, Agarwal P, Kim K-H, Zhu Y, Zhu W, Lebel M, Cheng CW, Park CY, Pierce SA. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell. 2005;123(2):347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214.

    Article  CAS  PubMed  Google Scholar 

  124. Karakikes I, Chaanine AH, Kang S, Mukete BN, Jeong D, Zhang S, Hajjar RJ, Lebeche D. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload–induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc. 2013;2(2):e000078.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Da Costa Martins PA, De Windt LJ. MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res. 2012;93(4):563–72.

    Article  PubMed  CAS  Google Scholar 

  126. Li Q, Lin X, Yang X, Chang J. NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am J Phys Heart Circ Phys. 2010;298(5):H1340–7.

    CAS  Google Scholar 

  127. Ren J, Samson WK, Sowers JR. Insulin-like growth factor I as aÈCardiac hormone: physiological and pathophysiological implications in heart disease. J Mol Cell Cardiol. 1999;31(11):2049–61.

    Article  CAS  PubMed  Google Scholar 

  128. Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, Cimino V, De LM, Frustaci A, Catalucci D. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation. 2009;120(23):2377–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dong D-L, Chen C, Huo R, Wang N, Li Z, Tu Y-J, Hu J-T, Chu X, Huang W, Yang B-F. Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy. Hypertension. 2010;55(4):946–52.

    Article  CAS  PubMed  Google Scholar 

  130. Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev. 2010;26(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  131. Xiao J, Luo X, Lin H, Zhang Y, Lu Y, Wang N, Zhang Y, Yang B, Wang Z. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem. 2007;282(17):12363–7.

    Article  CAS  PubMed  Google Scholar 

  132. Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009;104(2):170–8.

    Article  CAS  PubMed  Google Scholar 

  133. Luo X, Lin H, Pan Z, Xiao J, Zhang Y, Lu Y, Yang B, Wang Z. Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem. 2008;283(29):20045–52.

    Article  CAS  PubMed  Google Scholar 

  134. Hua Y, Zhang Y, Ren J. IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: role of microRNA-1 and microRNA-133a. J Cell Mol Med. 2012;16(1):83–95.

    Article  CAS  PubMed  Google Scholar 

  135. Townley-Tilson WD, Callis TE, Wang D. Micro-RNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol. 2010;42(8):1252–5.

    Google Scholar 

  136. Bagnall RD, Tsoutsman T, Shephard RE, Ritchie W, Semsarian C. Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure. PLoS One. 2012;7(9):e44744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Drawnel FM, Wachten D, Molkentin JD, Maillet M, Aronsen JM, Swift F, Sjaastad I, Liu N, Catalucci D, Mikoshiba K. Mutual antagonism between IP3RII and miRNA-133a regulates calcium signals and cardiac hypertrophy. J Cell Biol. 2012;199(5):783–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Villar AV, Merino D, Wenner M, Llano M, Cobo M, Montalvo C, García R, Martín-Durán R, Hurlé JM, Hurlé MA. Myocardial gene expression of microRNA-133a and myosin heavy and light chains, in conjunction with clinical parameters, predict regression of left ventricular hypertrophy after valve replacement in patients with aortic stenosis. Heart. 2011;97(14):1132–7.

    Article  PubMed  Google Scholar 

  139. Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003;17(18):2205–32.

    Article  CAS  PubMed  Google Scholar 

  140. Wang K, Lin Z-Q, Long B, Li J-H, Zhou J, Li P-F. Cardiac hypertrophy is positively regulated by MicroRNA miR-23a. J Biol Chem. 2012;287(1):589–99.

    Article  CAS  PubMed  Google Scholar 

  141. Guo J, Gertsberg Z, Ozgen N, Steinberg SF. p66Shc links α1-adrenergic receptors to a reactive oxygen species-dependent AKT-FOXO3A phosphorylation pathway in cardiomyocytes. Circ Res. 2009;104(5):660–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9.

    Article  PubMed  CAS  Google Scholar 

  143. Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li P-F. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci. 2009;106(29):12103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang J, Nie Y, Wang F, Hou J, Cong X, Hu S, Chen X. Reciprocal regulation of miR-23a and lysophosphatidic acid receptor signaling in cardiomyocyte hypertrophy. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids. 2013;1831(8):1386–94.

    CAS  Google Scholar 

  145. Van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci. 2008;105(35):13027–32.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Boon RA, Seeger T, Heydt S, Fischer A, Hergenreider E, Horrevoets AJ, Vinciguerra M, Rosenthal N, Sciacca S, Pilato M. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res. 2011;109(10):1115–9.

    Article  CAS  PubMed  Google Scholar 

  147. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324(5935):1710–3.

    Article  CAS  PubMed  Google Scholar 

  148. Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem. 2005;280(10):9330–5.

    Article  CAS  PubMed  Google Scholar 

  149. Suárez Y, Fernández-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela-Arispe ML, Merkenschlager M, Sessa WC. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci. 2008;105(37):14082–7.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Fish JE, Santoro MM, Morton SU, Yu S, Yeh R-F, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15(2):272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, van Oeveren-Rietdijk AM, Baelde HJ, Monge M, Vos JB, de Boer HC. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med. 2009;13(8a):1577–85.

    Article  PubMed  CAS  Google Scholar 

  152. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Bernardo BC, Gao X-M, Winbanks CE, Boey EJ, Tham YK, Kiriazis H, Gregorevic P, Obad S, Kauppinen S, Du X-J. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci. 2012;109(43):17615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nalls D, Tang S-N, Rodova M, Srivastava RK, Shankar S. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One. 2011;6(8):e24099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zemljic-Harpf AE, Miller JC, Henderson SA, Wright AT, Manso AM, Elsherif L, Dalton ND, Thor AK, Perkins GA, McCulloch AD. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol Cell Biol. 2007;27(21):7522–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Okamura Y, Saga Y. Pofut1 is required for the proper localization of the notch receptor during mouse development. Mech Dev. 2008;125(8):663–73.

    Article  CAS  PubMed  Google Scholar 

  157. Nakagawa Y, Takamatsu H, Okuno T, Kang S, Nojima S, Kimura T, Kataoka TR, Ikawa M, Toyofuku T, Katayama I. Identification of semaphorin 4B as a negative regulator of basophil-mediated immune responses. J Immunol. 2011;186(5):2881–8.

    Article  CAS  PubMed  Google Scholar 

  158. Molkentin JD. Calcineurin and beyond: cardiac hypertrophic signaling. Circ Res. 2000;87(9):731–8.

    Article  CAS  PubMed  Google Scholar 

  159. Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation. 2002;105(6):677–9.

    Article  CAS  PubMed  Google Scholar 

  160. Xing W, Zhang T-C, Cao D, Wang Z, Antos CL, Li S, Wang Y, Olson EN, Wang D-Z. Myocardin induces cardiomyocyte hypertrophy. Circ Res. 2006;98(8):1089–97.

    Article  CAS  PubMed  Google Scholar 

  161. Alcendor RR, Kirshenbaum LA, Imai S-i, Vatner SF, Sadoshima J. Silent information regulator 2α, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res. 2004;95(10):971–80.

    Article  CAS  PubMed  Google Scholar 

  162. Rane S, He M, Sayed D, Yan L, Vatner D, Abdellatif M. An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cell Signal. 2010;22(7):1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Haghikia A, Missol-Kolka E, Tsikas D, Venturini L, Brundiers S, Castoldi M, Muckenthaler MU, Eder M, Stapel B, Thum T. Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: a key role for ubiquitin-conjugating enzymes. Eur Heart J. 2010;32(10):1287–97.

    Article  PubMed  CAS  Google Scholar 

  164. da Costa Martins PA, Salic K, Gladka MM, Armand A-S, Leptidis S, El Azzouzi H, Hansen A, Coenen-de Roo CJ, Bierhuizen MF, Van Der Nagel R. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol. 2010;12(12):1220.

    Article  PubMed  CAS  Google Scholar 

  165. Ali T, Shaheen F, Mahmud M, Waheed H, Jan MI, Javed Q, Murtaza I. Serotonin-promoted elevation of ROS levels may lead to cardiac pathologies in diabetic rat. Arch Oral Biol. 2015;67(2):655–61.

    Article  Google Scholar 

  166. Jan MI, Khan RA, Ali T, Bilal M, Bo L, Sajid A, Malik A, Urehman N, Waseem N, Nawab J. Interplay of mitochondria apoptosis regulatory factors and microRNAs in valvular heart disease. Arch Biochem Biophys. 2017;633:50–7.

    Article  CAS  PubMed  Google Scholar 

  167. Murtaza I, Wang H-X, Feng X, Alenina N, Bader M, Prabhakar BS, Li P-F. Down-regulation of catalase and oxidative modification of protein kinase CK2 lead to the failure of apoptosis repressor with caspase recruitment domain to inhibit cardiomyocyte hypertrophy. J Biol Chem. 2008;283(10):5996–6004.

    Article  CAS  PubMed  Google Scholar 

  168. Murtaza I, Wang H-X, Mushtaq S, Javed Q, Li P-F. Interplay of phosphorylated apoptosis repressor with CARD, casein Kinase-2 and reactive oxygen species in regulating Endothelin-1–induced Cardiomyocyte hypertrophy. Iran J Basic Med Sci. 2013;16(8):928.

    PubMed  PubMed Central  Google Scholar 

  169. Ali T, Mushtaq I, Maryam S, Farhan A, Saba K, Jan MI, Sultan A, Anees M, Duygu B, Hamera S. Interplay of N acetyl cysteine and melatonin in regulating oxidative stress-induced cardiac hypertrophic factors and microRNAs. Arch Biochem Biophys. 2019;661:56–65.

    Article  CAS  PubMed  Google Scholar 

  170. Caporali A, Meloni M, Völlenkle C, Bonci D, Sala-Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH. Deregulation of microRNA-503 contributes to diabetes mellitus–induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation. 2011;123(3):282–91.

    Article  CAS  PubMed  Google Scholar 

  171. McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S. MicroRNA-200b regulates vascular endothelial growth factor–mediated alterations in diabetic retinopathy. Diabetes. 2011;60(4):1314–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci. 2006;103(48):18255–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  174. Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med. 2012;4(1):3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Marquart TJ, Allen RM, Ory DS, Baldán Á. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci. 2010;107(27):12228–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Boettger T, Beetz N, Kostin S, Schneider J, Krüger M, Hein L, Braun T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 2009;119(9):2634–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Thom T. American Heart Association statistics committee and stroke statistics subcommittee: heart disease and stroke statistical-2006 update: a report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation. 2006;113:e85–e151.

    PubMed  Google Scholar 

  178. Freeman RV, Otto CM. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation. 2005;111(24):3316–26.

    Article  PubMed  Google Scholar 

  179. Lloyd-Jones D, Adams R, Brown T, Carnethon M, Dai S, De Simone G, Ferguson T, Ford E, Furie K, Gillespie C. American Heart Association statistics committee and stroke statistics subcommittee. Executive summary: heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010;121(7):948–54.

    Article  PubMed  Google Scholar 

  180. Butcher JT, Penrod AM, García AJ, Nerem RM. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler Thromb Vasc Biol. 2004;24(8):1429–34.

    Article  CAS  PubMed  Google Scholar 

  181. Nigam V, Srivastava D. Notch1 represses osteogenic pathways in aortic valve cells. J Mol Cell Cardiol. 2009;47(6):828–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cushing MC, Mariner PD, Liao J-T, Sims EA, Anseth KS. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. FASEB J. 2008;22(6):1769–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang M, Liu X, Zhang X, Song Z, Han L, He Y, Xu Z. MicroRNA-30b is a multifunctional regulator of aortic valve interstitial cells. J Thorac Cardiovasc Surg. 2014;147(3):1073–80. e1072

    Article  CAS  PubMed  Google Scholar 

  184. Speer MY, Yang H-Y, Brabb T, Leaf E, Look A, Lin W-L, Frutkin A, Dichek D, Giachelli CM. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 2009;104(6):733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Leopold JA. Vascular calcification: mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 2015;25(4):267–74.

    Article  CAS  PubMed  Google Scholar 

  186. Nakashima A, Katagiri T, Tamura M. Cross-talk between Wnt and bone morphogenetic protein 2 (BMP-2) signaling in differentiation pathway of C2C12 myoblasts. J Biol Chem. 2005;280(45):37660–8.

    Article  CAS  PubMed  Google Scholar 

  187. Itoh T, Takeda S, Akao Y. MicroRNA-208 modulates BMP-2-stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1. J Biol Chem. 2010;285(36):27745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hu R, Liu W, Li H, Yang L, Chen C, Xia Z-Y, Guo L-J, Xie H, Zhou H-D, Wu X-P. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem. 2011;286(14):12328–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Carabello BA. Modern management of mitral stenosis. Circulation. 2005;112(3):432–7.

    Article  PubMed  Google Scholar 

  190. Cooley N, Cowley MJ, Lin RC, Marasco S, Wong C, Kaye DM, Dart AM, Woodcock EA. Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease. Physiol Genomics. 2011;44(3):211–9.

    Article  PubMed  CAS  Google Scholar 

  191. Nishi H, Sakaguchi T, Miyagawa S, Yoshikawa Y, Fukushima S, Saito S, Ueno T, Kuratani T, Sawa Y. Impact of microRNA expression in human atrial tissue in patients with atrial fibrillation undergoing cardiac surgery. PLoS One. 2013;8(9):e73397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yetkin E, Waltenberger J. Molecular and cellular mechanisms of aortic stenosis. Int J Cardiol. 2009;135(1):4–13.

    Article  PubMed  Google Scholar 

  193. Villar AV, García R, Merino D, Llano M, Cobo M, Montalvo C, Martín-Durán R, Hurlé MA, Nistal JF. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int J Cardiol. 2013;167(6):2875–81.

    Article  PubMed  Google Scholar 

  194. Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, Chun B, Zhuang J, Zhang C. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res. 2010;87(3):431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008;28(17):5369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kassiri Z, Defamie V, Hariri M, Oudit GY, Anthwal S, Dawood F, Liu P, Khokha R. Simultaneous transforming growth factor β-tumor necrosis factor activation and cross-talk cause aberrant remodeling response and myocardial fibrosis in Timp3-deficient heart. J Biol Chem. 2009;284(43):29893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yao Q, Cao S, Li C, Mengesha A, Kong B, Wei M. Micro-RNA-21 regulates TGF-β-induced myofibroblast differentiation by targeting PDCD4 in tumor-stroma interaction. Int J Cancer. 2011;128(8):1783–92.

    Article  CAS  PubMed  Google Scholar 

  198. Duffy HS. The ever shrinking world of cardiac ion channel remodeling: the role of microRNAs in heart disease. Heart Rhythm. 2009;6(12):1810.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Liu H, Chen G-x, Liang M-y, Qin H, Rong J, Yao J-p, Wu Z-k. Atrial fibrillation alters the microRNA expression profiles of the left atria of patients with mitral stenosis. BMC Cardiovasc Disord. 2014;14(1):10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Girmatsion Z, Biliczki P, Bonauer A, Wimmer-Greinecker G, Scherer M, Moritz A, Bukowska A, Goette A, Nattel S, Hohnloser SH. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm. 2009;6(12):1802–9.

    Article  PubMed  Google Scholar 

  201. Di Leva G, Calin GA, Croce CM. MicroRNAs: fundamental facts and involvement in human diseases. Birth Defects Res C Embryo Today. 2006;78(2):180–9.

    Article  PubMed  CAS  Google Scholar 

  202. Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004;32(suppl_1):D109–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT. Altered microRNA expression in human heart disease. Physiol Genomics. 2007;31(3):367–73.

    Article  CAS  PubMed  Google Scholar 

  204. Mowbray AL, Kang D-H, Rhee SG, Kang SW, Jo H. Laminar shear stress up-regulates peroxiredoxins (PRX) in endothelial cells PRX 1 as a mechanosensitive antioxidant. J Biol Chem. 2008;283(3):1622–7.

    Article  CAS  PubMed  Google Scholar 

  205. Holliday CJ, Ankeny RF, Jo H, Nerem RM. Discovery of shear-and side-specific mRNAs and miRNAs in human aortic valvular endothelial cells. Am J Phys Heart Circ Phys. 2011;301(3):H856–67.

    CAS  Google Scholar 

  206. Caroli A, Cardillo MT, Galea R, Biasucci LM. Potential therapeutic role of microRNAs in ischemic heart disease. J Cardiol. 2013;61(5):315–20.

    Article  PubMed  Google Scholar 

  207. Li L-M, Hou D-X, Guo Y-L, Yang J-W, Liu Y, Zhang C-Y, Zen K. Role of microRNA-214–targeting phosphatase and tensin homolog in advanced glycation end product-induced apoptosis delay in monocytes. J Immunol. 2011;186(4):2552–60.

    Article  CAS  PubMed  Google Scholar 

  208. van Mil A, Grundmann S, Goumans M-J, Lei Z, Oerlemans MI, Jaksani S, Doevendans PA, Sluijter JP. MicroRNA-214 inhibits angiogenesis by targeting quaking and reducing angiogenic growth factor release. Cardiovasc Res. 2012;93(4):655–65.

    Article  PubMed  CAS  Google Scholar 

  209. Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, Skidmore B, Stone JA, Thompson DR, Oldridge N. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med. 2004;116(10):682–92.

    Article  PubMed  Google Scholar 

  210. Wisløff U, Loennechen JP, Currie S, Smith GL, Ellingsen Ø. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res. 2002;54(1):162–74.

    Article  PubMed  Google Scholar 

  211. Cardin S, Guasch E, Luo X, Naud P, Le Quang K, Shi Y, Tardif J-C, Comtois P, Nattel S. Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ Arrhythm Electrophysiol. 2012;5(5):1027–35.

    Article  CAS  PubMed  Google Scholar 

  212. Ardite E, Perdiguero E, Vidal B, Gutarra S, Serrano AL, Muñoz-Cánoves P. PAI-1–regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy. J Cell Biol. 2012;196(1):163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Yuan J, Chen H, Ge D, Xu Y, Xu H, Yang Y, Gu M, Zhou Y, Zhu J, Ge T. Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem. 2017;42(6):2207–19.

    Article  CAS  PubMed  Google Scholar 

  214. Sayed D, He M, Hong C, Gao S, Rane S, Yang Z, Abdellatif M. MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem. 2010;285(26):20281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Brudecki L, Ferguson DA, McCall CE, El Gazzar M. MicroRNA-146a and RBM4 form a negative feed-forward loop that disrupts cytokine mRNA translation following TLR4 responses in human THP-1 monocytes. Immunol Cell Biol. 2013;91(8):532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Huang W, Tian S-S, Hang P-Z, Sun C, Guo J, Du Z-M. Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol Ther-Nucleic Acids. 2016;5:e296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res. 2012;110(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  218. Boon RA, Dimmeler S. MicroRNAs in myocardial infarction. Nat Rev Cardiol. 2015;12(3):135.

    Article  CAS  PubMed  Google Scholar 

  219. Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med. 2011;208(3):549–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JT, Sohn-Lee C. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124(6):720–30.

    Article  CAS  PubMed  Google Scholar 

  221. Port JD, Walker LA, Polk J, Nunley K, Buttrick PM, Sucharov CC. Temporal expression of miRNAs and mRNAs in a mouse model of myocardial infarction. Physiol Genomics. 2011;43(19):1087–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Park S-Y, Lee JH, Ha M, Nam J-W, Kim VN. miR-29 miRNAs activate p53 by targeting p85α and CDC42. Nat Struct Mol Biol. 2009;16(1):23.

    Article  CAS  PubMed  Google Scholar 

  223. Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-γ agonist protects against myocardial ischaemia–reperfusion injury. Cardiovasc Res. 2010;87(3):535–44.

    Article  CAS  PubMed  Google Scholar 

  224. Doebele C, Bonauer A, Fischer A, Scholz A, Reiss Y, Urbich C, Hofmann W-K, Zeiher AM, Dimmeler S. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood. 2010;115(23):4944–50.

    Article  CAS  PubMed  Google Scholar 

  225. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci. 2008;105(5):1516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Long G, Wang F, Duan Q, Chen F, Yang S, Gong W, Wang Y, Chen C, Wang DW. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci. 2012;8(6):811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. López-Novoa JM, Bernabeu C. The physiological role of endoglin in the cardiovascular system. Am J Phys Heart Circ Phys. 2010;299(4):H959–74.

    Google Scholar 

  228. Nattel S. Targeting MicroRNA-208a to suppress adverse postmyocardial infarction remodelling related to RNA activation of endoglin gene expression. Can J Cardiol. 2015;31(5):591–2.

    Article  PubMed  Google Scholar 

  229. Liu N, Olson EN. MicroRNA regulatory networks in cardiovascular development. Dev Cell. 2010;18(4):510–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22(23):3242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis SM, Spinale FG. Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circ Cardiovasc Genet. 2011;4(6):614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wang K-C, Garmire LX, Young A, Nguyen P, Trinh A, Subramaniam S, Wang N, Shyy JY, Li Y-S, Chien S. Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci. 2010;107(7):3234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Devaux Y, Vausort M, Goretti E, Nazarov PV, Azuaje F, Gilson G, Corsten MF, Schroen B, Lair M-L, Heymans S. Use of circulating microRNAs to diagnose acute myocardial infarction. Clin Chem. 2012;58(3):559–67.

    Article  CAS  PubMed  Google Scholar 

  234. Oury C, Servais L, Bouznad N, Hego A, Nchimi A, Lancellotti P. MicroRNAs in valvular heart diseases: potential role as markers and actors of valvular and cardiac remodeling. Int J Mol Sci. 2016;17(7):1120.

    Article  PubMed Central  CAS  Google Scholar 

  235. Olivieri F, Antonicelli R, Lorenzi M, D’Alessandra Y, Lazzarini R, Santini G, Spazzafumo L, Lisa R, La Sala L, Galeazzi R. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol. 2013;167(2):531–6.

    Article  PubMed  Google Scholar 

  236. Rossi AC, Mammucari C, Argentini C, Reggiani C, Schiaffino S. Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J Physiol. 2010;588(2):353–64.

    Article  CAS  PubMed  Google Scholar 

  237. Wilson KD, Hu S, Venkatasubrahmanyam S, Fu J-D, Sun N, Abilez OJ, Baugh JJ, Jia F, Ghosh Z, Li RA. Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circ Cardiovasc Genet. 2010;3(5):426–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Cheng C, Wang Q, You W, Chen M, Xia J. MiRNAs as biomarkers of myocardial infarction: a meta-analysis. PLoS One. 2014;9(2):e88566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Zhang J, Jiao J, Cermelli S, Muir K, Jung KH, Zou R, Rashid A, Gagea M, Zabludoff S, Kalluri R. miR-21 inhibition reduces liver fibrosis and prevents tumor development by inducing apoptosis of CD24+ progenitor cells. Cancer Res. 2015;75(9):1859–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wang J-X, Jiao J-Q, Li Q, Long B, Wang K, Liu J-P, Li Y-R, Li P-F. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med. 2011;17(1):71.

    Article  PubMed  CAS  Google Scholar 

  241. Hosoda T, Zheng H, Cabral-da-Silva M, Sanada F, Ide-Iwata N, Ogórek B, Ferreira-Martins J, Arranto C, D’Amario D, Del Monte F. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation. 2011;12:1287–96.

    Article  CAS  Google Scholar 

  242. Li K, Lin T, Chen L, Wang N. MicroRNA-93 elevation after myocardial infarction is cardiac protective. Med Hypotheses. 2017;106:23–5.

    Article  CAS  PubMed  Google Scholar 

  243. Bayoumi AS, Teoh J-P, Aonuma T, Yuan Z, Ruan X, Tang Y, Su H, Weintraub NL, Kim I-M. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res. 2017;113(13):1603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Sun C, Liu H, Guo J, Yu Y, Yang D, He F, Du Z. MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3. Sci Rep. 2017;7(1):7460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Zhang X, Wang X, Zhu H, Zhu C, Wang Y, Pu WT, Jegga AG, Fan G-C. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol. 2010;49(5):841–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Zhang Z, Li H, Chen S, Li Y, Cui Z, Ma J. MicroRNA-122 regulates caspase-8 and promotes the apoptosis of mouse cardiomyocytes. Braz J Med Biol Res. 2017;50(2):e5760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Mishima Y, Stahlhut C, Giraldez AJ. miR-1-2 gets to the heart of the matter. Cell. 2007;129(2):247–9.

    Article  CAS  PubMed  Google Scholar 

  248. Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun. 2010;391(1):73–7.

    Article  CAS  PubMed  Google Scholar 

  249. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011;31(11):2383–90.

    Article  CAS  PubMed  Google Scholar 

  250. Han M, Toli J, Abdellatif M. MicroRNAs in the cardiovascular system. Curr Opin Cardiol. 2011;26(3):181–9.

    Article  PubMed  Google Scholar 

  251. Liu J, Sun F, Wang Y, Yang W, Xiao H, Zhang Y, Lu R, Zhu H, Zhuang Y, Pan Z. Suppression of microRNA-16 protects against acute myocardial infarction by reversing beta2-adrenergic receptor down-regulation in rats. Oncotarget. 2017;8(12):20122.

    PubMed  PubMed Central  Google Scholar 

  252. Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J, Feng S, Xie L, Lu C, Yuan Y. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation. 2012;126(7):840–50.

    Article  CAS  PubMed  Google Scholar 

  253. Shen Y, Shen Z, Miao L, Xin X, Lin S, Zhu Y, Guo W, Zhu YZ. miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-γ-lyase expression. Antioxid Redox Signal. 2015;22(3):224–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Gupta SK, Foinquinos A, Thum S, Remke J, Zimmer K, Bauters C, de Groote P, Boon RA, de Windt LJ, Preissl S. Preclinical development of a microRNA-based therapy for elderly patients with myocardial infarction. J Am Coll Cardiol. 2016;68(14):1557–71.

    Article  CAS  PubMed  Google Scholar 

  255. Fan ZG, Qu XL, Chu P, Gao YL, Gao XF, Chen SL, Tian NL. MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol Med Rep. 2018;17(4):5658–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Fan F, Sun A, Zhao H, Liu X, Zhang W, Jin X, Wang C, Ma X, Shen C, Zou Y. MicroRNA-34a promotes cardiomyocyte apoptosis post myocardial infarction through down-regulating aldehyde dehydrogenase 2. Curr Pharm Des. 2013;19(27):4865–73.

    Article  CAS  PubMed  Google Scholar 

  257. Fan G-C, Ren X, Qian J, Yuan Q, Nicolaou P, Wang Y, Jones WK, Chu G, Kranias EG. Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation. 2005;111(14):1792–9.

    Article  CAS  PubMed  Google Scholar 

  258. Wu Z, Qi Y, Guo Z, Li P, Zhou D. miR-613 suppresses ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting the programmed cell death 10 gene. Biosci Trends. 2016;10(4):251–7.

    Article  CAS  PubMed  Google Scholar 

  259. Abonnenc M, Nabeebaccus AA, Mayr U, Barallobre-Barreiro J, Dong X, Cuello F, Sur S, Drozdov I, Langley SR, Lu R. Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ Res. 2013;113(10):1138–47.

    Article  CAS  PubMed  Google Scholar 

  260. Zhang Y, Huang X-R, Wei L-H, Chung AC, Yu C-M, Lan H-Y. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol Ther. 2014;22(5):974–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Lorenzen JM, Schauerte C, Hübner A, Kölling M, Martino F, Scherf K, Batkai S, Zimmer K, Foinquinos A, Kaucsar T. Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur Heart J. 2015;36(32):2184–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18(5):457–68.

    Article  CAS  PubMed  Google Scholar 

  263. Bujak M, Frangogiannis NG. The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74(2):184–95.

    Article  CAS  PubMed  Google Scholar 

  264. Van Rooij E, Olson EN. Searching for miR-acles in cardiac fibrosis. Am Heart Assoc; 2009;104(2):138–40. 

    Google Scholar 

  265. Zhu H, Fan G-C. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res. 2011;94(2):284–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Jan MI, Khan RA, Malik A, Ali T, Bilal M, Bo L, Sajid A, Urehman N, Waseem N, Nawab J. Data of expression status of miR-29a and its putative target mitochondrial apoptosis regulatory gene DRP1 upon miR-15a and miR-214 inhibition. Data Brief. 2018;16:1000–4.

    Article  PubMed  Google Scholar 

  267. Ke Z-P, Xu P, Shi Y, Gao A-M. MicroRNA-93 inhibits ischemia-reperfusion induced cardiomyocyte apoptosis by targeting PTEN. Oncotarget. 2016;7(20):28796.

    Article  PubMed  PubMed Central  Google Scholar 

  268. He S, Liu P, Jian Z, Li J, Zhu Y, Feng Z, Xiao Y. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem Biophys Res Commun. 2013;441(4):763–9.

    Article  CAS  PubMed  Google Scholar 

  269. Wang J, Liew OW, Richards AM, Chen Y-T. Overview of microRNAs in cardiac hypertrophy, fibrosis, and apoptosis. Int J Mol Sci. 2016;17(5):749.

    Article  PubMed Central  CAS  Google Scholar 

  270. Song C-L, Liu B, Diao H-Y, Shi Y-F, Zhang J-C, Li Y-X, Liu N, Yu Y-P, Wang G, Wang J-P. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1. Oncotarget. 2016;7(26):39740.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Liang W, Guo J, Li J, Bai C, Dong Y. Downregulation of miR-122 attenuates hypoxia/reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochem Biophys Res Commun. 2016;478(3):1416–22.

    Article  CAS  PubMed  Google Scholar 

  272. Zou Y, Liu W, Zhang J, Xiang D. miR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1. Mol Med Rep. 2016;14(1):1033–9.

    Article  CAS  PubMed  Google Scholar 

  273. Wang J-X, Gao J, Ding S-L, Wang K, Jiao J-Q, Wang Y, Sun T, Zhou L-Y, Long B, Zhang X-J. Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w. Mol Cell. 2015;59(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  274. Bo L, Su-Ling D, Fang L, Lu-Yu Z, Tao A, Stefan D, Kun W, Pei-Feng L. Autophagic program is regulated by miR-325. Cell Death Differ. 2014;21(6):967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Wang K, Liu F, Zhou L, Ding S, Long B, Liu C, Sun T, Fan Y, Sun L, Li P. miR-874 regulates myocardial necrosis by targeting caspase-8. Cell Death Dis. 2013;4(7):e709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Higashi K, Yamada Y, Minatoguchi S, Baba S, Iwasa M, Kanamori H, Kawasaki M, Nishigaki K, Takemura G, Kumazaki M. MicroRNA-145 repairs infarcted myocardium by accelerating cardiomyocyte autophagy. Am J Phys Heart Circ Phys. 2015;309(11):H1813–26.

    CAS  Google Scholar 

  277. Chen Y-W, Chou H-C, Lin S-T, Chen Y-H, Chang Y-J, Chen L, Chan H-L. Cardioprotective effects of quercetin in cardiomyocyte under ischemia/reperfusion injury. Evid-Based Complement Altern Med. 2013;2013:1–16.

    Google Scholar 

  278. Pandey R, Yang Y, Jackson L, Ahmed RP. MicroRNAs regulating meis1 expression and inducing cardiomyocyte proliferation. Cardiovasc Reg Med. 2016;3:e1468.

    Google Scholar 

  279. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376.

    Article  CAS  PubMed  Google Scholar 

  280. Liang D, Li J, Wu Y, Zhen L, Li C, Qi M, Wang L, Deng F, Huang J, Lv F. miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2. Int J Cardiol. 2015;201:38–48.

    Article  PubMed  Google Scholar 

  281. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci. 2013;110(1):187–92.

    Article  CAS  PubMed  Google Scholar 

  282. Yin VP, Lepilina A, Smith A, Poss KD. Regulation of zebrafish heart regeneration by miR-133. Dev Biol. 2012;365(2):319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Katz MG, Fargnoli AS, Kendle AP, Hajjar RJ, Bridges CR. The role of microRNAs in cardiac development and regenerative capacity. Am J Phys Heart Circ Phys. 2015;310(5):H528–41.

    Google Scholar 

  284. Tao G, Wang J, Martin JF. Small RNA: from development to regeneration. Sci Transl Med. 2015;7:212.

    Article  CAS  Google Scholar 

  285. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N. A microRNA-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7(279):279ra238.

    Article  CAS  Google Scholar 

  286. Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65(1):40–51.

    Article  CAS  PubMed  Google Scholar 

  287. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110(11):1465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Santulli G, Iaccarino G, De Luca N, Trimarco B, Condorelli G. Atrial fibrillation and microRNAs. Front Physiol. 2014;5:15.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Romaine SP, Tomaszewski M, Condorelli G, Samani NJ. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart. 2015;101(12):921–8.

    Article  CAS  PubMed  Google Scholar 

  290. Marques FZ, Romaine SP, Denniff M, Eales J, Dormer J, Garrelds IM, Wojnar L, Musialik K, Duda-Raszewska B, Kiszka B. Signatures of miR-181a on the renal transcriptome and blood pressure. Mol Med. 2015;21(1):739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Marques F, Booth S, Charchar F. The emerging role of non-coding RNA in essential hypertension and blood pressure regulation. J Hum Hypertens. 2015;29(8):459.

    Article  CAS  PubMed  Google Scholar 

  292. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3(6):499–506.

    Article  PubMed  Google Scholar 

  293. Zhang Y, Zhang M, Li X, Tang Z, Wang X, Zhong M, Suo Q, Zhang Y, Lv K. Silencing microRNA-155 attenuates cardiac injury and dysfunction in viral myocarditis via promotion of M2 phenotype polarization of macrophages. Sci Rep. 2016;6:22613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Corsten M, Heggermont W, Papageorgiou A-P, Deckx S, Tijsma A, Verhesen W, van Leeuwen R, Carai P, Thibaut H-J, Custers K. The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. Eur Heart J. 2015;36(42):2909–19.

    Article  CAS  PubMed  Google Scholar 

  295. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20(4):368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci. 2007;104(5):1604–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  297. Jan MI, Khan RA, Sultan A, Ullah A, Ishtiaq A, Murtaza I. Analysis of NT-proBNP and uric acid due to left ventricle hypertrophy in the patients of aortic valve disease. Pak J Med Sci. 2019;35(1):183.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iram Murtaza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jan, M.I., Ali, T., Ishtiaq, A., Mushtaq, I., Murtaza, I. (2020). Prospective Advances in Non-coding RNAs Investigation. In: Xiao, J. (eds) Non-coding RNAs in Cardiovascular Diseases. Advances in Experimental Medicine and Biology, vol 1229. Springer, Singapore. https://doi.org/10.1007/978-981-15-1671-9_24

Download citation

Publish with us

Policies and ethics