Skip to main content

Y RNAs: Biogenesis, Function and Implications for the Cardiovascular System

  • Chapter
  • First Online:
Non-coding RNAs in Cardiovascular Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1229))

Abstract

In recent years, progress in the field of high-throughput sequencing technology and its application to a wide variety of biological specimens has greatly advanced the discovery and cataloging of a diverse set of non-coding RNAs (ncRNAs) that have been found to have unexpected biological functions. Y RNAs are an emerging class of highly conserved, small ncRNAs. There is a growing number of reports in the literature demonstrating that Y RNAs and their fragments are not just random degradation products but are themselves bioactive molecules. This review will outline what is currently known about Y RNA including biogenesis, structure and functional roles. In addition, we will provide an overview of studies reporting the presence and functions attributed to Y RNAs in the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birney E. Evolutionary genomics: come fly with us. Nature. 2007;450(7167):184–5.

    Article  CAS  PubMed  Google Scholar 

  2. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y, Consortium F, Group RGER, Genome Science G. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63.

    Article  CAS  PubMed  Google Scholar 

  3. Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med. 2012;4(1):3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Greco S, Salgado Somoza A, Devaux Y, Martelli F. Long noncoding RNAs and cardiac disease. Antioxid Redox Signal. 2018;29(9):880–901.

    Article  CAS  PubMed  Google Scholar 

  5. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253–61.

    Article  CAS  PubMed  Google Scholar 

  6. Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20(8):460–9.

    Article  CAS  PubMed  Google Scholar 

  7. Fan B, Luk AOY, Chan JCN, Ma RCW. MicroRNA and diabetic complications: a clinical perspective. Antioxid Redox Signal. 2018;29(11):1041–63.

    Article  CAS  PubMed  Google Scholar 

  8. Giroud M, Scheideler M. Long non-coding RNAs in metabolic organs and energy homeostasis. Int J Mol Sci. 2017;18(12).

    Google Scholar 

  9. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91(3):827–87.

    Article  CAS  PubMed  Google Scholar 

  10. Ng SY, Lin L, Soh BS, Stanton LW. Long noncoding RNAs in development and disease of the central nervous system. Trends Genet. 2013;29(8):461–8.

    Article  CAS  PubMed  Google Scholar 

  11. Duan L, Xiong X, Liu Y, Wang J. miRNA-1: functional roles and dysregulation in heart disease. Mol Omics Mol Biosyst. 2014;10(11):2775–82.

    Article  CAS  Google Scholar 

  12. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. J Cancer. 2012;18(3):215–22.

    Article  CAS  Google Scholar 

  14. Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet. 2014;5:158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wang Q, Lee I, Ren J, Ajay SS, Lee YS, Bao X. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol Ther. 2013;21(2):368–79.

    Article  CAS  PubMed  Google Scholar 

  16. Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20(2):89–108.

    Article  CAS  PubMed  Google Scholar 

  17. Assumpcao CB, Calcagno DQ, Araujo TM, Santos SE, Santos AK, Riggins GJ, Burbano RR, Assumpcao PP. The role of piRNA and its potential clinical implications in cancer. Epigenomics. 2015;7(6):975–84.

    Article  CAS  PubMed  Google Scholar 

  18. Lerner MR, Boyle JA, Hardin JA, Steitz JA. Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science. 1981;211(4480):400–2.

    Article  CAS  PubMed  Google Scholar 

  19. Lerner MR, Steitz JA. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1979;76(11):5495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sim S, Weinberg DE, Fuchs G, Choi K, Chung J, Wolin SL. The subcellular distribution of an RNA quality control protein, the Ro autoantigen, is regulated by noncoding Y RNA binding. Mol Biol Cell. 2009;20(5):1555–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pruijn GJ, Wingens PA, Peters SL, Thijssen JP, van Venrooij WJ. Ro RNP associated Y RNAs are highly conserved among mammals. BBA-Mol Basis Dis. 1993;1216(3):395–401.

    CAS  Google Scholar 

  22. Mosig A, Guofeng M, Stadler BM, Stadler PF. Evolution of the vertebrate Y RNA cluster. Theory Biosci. 2007;126(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  23. Sim S, Wolin SL. Bacterial Y RNAs: gates, tethers, and tRNA Mimics. Microbiol Spectr. 2018;6(4).

    Google Scholar 

  24. Van Horn DJ, Eisenberg D, O’Brien CA, Wolin SL. Caenorhabditis elegans embryos contain only one major species of Ro RNP. RNA Biol. 1995;1(3):293–303.

    Google Scholar 

  25. Boria I, Gruber AR, Tanzer A, Bernhart SH, Lorenz R, Mueller MM, Hofacker IL, Stadler PF. Nematode sbRNAs: homologs of vertebrate Y RNAs. J Mol Evol. 2010;70(4):346–58.

    Article  CAS  PubMed  Google Scholar 

  26. Wolin SL, Steitz JA. The Ro small cytoplasmic ribonucleoproteins: identification of the antigenic protein and its binding site on the Ro RNAs. Proc Natl Acad Sci U S A. 1984;81(7):1996–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Repetto E, Lichtenstein L, Hizir Z, Tekaya N, Benahmed M, Ruidavets JB, Zaragosi LE, Perret B, Bouchareychas L, Genoux A, Lotte R, Ruimy R, Ferrieres J, Barbry P, Martinez LO, Trabucchi M. RNY-derived small RNAs as a signature of coronary artery disease. BMC Med. 2015;13:259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Langley AR, Chambers H, Christov CP, Krude T. Ribonucleoprotein particles containing non-coding Y RNAs, Ro60, La and nucleolin are not required for Y RNA function in DNA replication. PLoS One. 2010;5(10):e13673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Maraia RJ, Sasaki-Tozawa N, Driscoll CT, Green ED, Darlington GJ. The human Y4 small cytoplasmic RNA gene is controlled by upstream elements and resides on chromosome 7 with all other hY scRNA genes. Nucleic Acids Res. 1994;22(15):3045–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maraia R, Sakulich AL, Brinkmann E, Green ED. Gene encoding human Ro-associated autoantigen Y5 RNA. Nucleic Acids Res. 1996;24(18):3552–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hendrick JP, Wolin SL, Rinke J, Lerner MR, Steitz JA. Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol Biol Cell. 1981;1(12):1138–49.

    Article  CAS  Google Scholar 

  32. Wolin SL, Steitz JA. Genes for two small cytoplasmic Ro RNAs are adjacent and appear to be single-copy in the human genome. Cell. 1983;32(3):735–44.

    Article  CAS  PubMed  Google Scholar 

  33. Perreault J, Noel JF, Briere F, Cousineau B, Lucier JF, Perreault JP, Boire G. Retropseudogenes derived from the human Ro/SS-A autoantigen-associated hY RNAs. Nucleic Acids Res. 2005;33(6):2032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perreault J, Perreault JP, Boire G. Ro-associated Y RNAs in metazoans: evolution and diversification. Mol Biol Evol. 2007;24(8):1678–89.

    Article  CAS  PubMed  Google Scholar 

  35. Simons FH, Rutjes SA, van Venrooij WJ, Pruijn GJ. The interactions with Ro60 and La differentially affect nuclear export of hY1 RNA. RNA Biol. 1996;2(3):264–73.

    CAS  Google Scholar 

  36. Wolin SL, Cedervall T. The La protein. Annu Rev Biochem. 2002;71:375–403.

    Article  CAS  PubMed  Google Scholar 

  37. Peek R, Pruijn GJ, van der Kemp AJ, van Venrooij WJ. Subcellular distribution of Ro ribonucleoprotein complexes and their constituents. J Cell Sci. 1993;106(Pt 3):929–35.

    CAS  PubMed  Google Scholar 

  38. Rutjes SA, Lund E, van der Heijden A, Grimm C, van Venrooij WJ, Pruijn GJ. Identification of a novel cis-acting RNA element involved in nuclear export of hY RNAs. RNA Biol. 2001;7(5):741–52.

    Article  CAS  Google Scholar 

  39. Gendron M, Roberge D, Boire G. Heterogeneity of human Ro ribonucleoproteins (RNPS): nuclear retention of Ro RNPS containing the human hY5 RNA in human and mouse cells. Clin Exp Immunol. 2001;125(1):162–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sim S, Yao J, Weinberg DE, Niessen S, Yates JR 3rd, Wolin SL. The zipcode-binding protein ZBP1 influences the subcellular location of the Ro 60-kDa autoantigen and the noncoding Y3 RNA. RNA Biol. 2012;18(1):100–10.

    Article  CAS  Google Scholar 

  41. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Teunissen SW, Kruithof MJ, Farris AD, Harley JB, Venrooij WJ, Pruijn GJ. Conserved features of Y RNAs: a comparison of experimentally derived secondary structures. Nucleic Acids Res. 2000;28(2):610–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Gelder CW, Thijssen JP, Klaassen EC, Sturchler C, Krol A, van Venrooij WJ, Pruijn GJ. Common structural features of the Ro RNP associated hY1 and hY5 RNAs. Nucleic Acids Res. 1994;22(13):2498–506.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Green CD, Long KS, Shi H, Wolin SL. Binding of the 60-kDa Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix. RNA Biol. 1998;4(7):750–65.

    Article  CAS  Google Scholar 

  45. Sim S, Wolin SL. Emerging roles for the Ro 60-kDa autoantigen in noncoding RNA metabolism. Wiley Interdiscip Rev Rna. 2011;2(5):686–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xia PZ, Fritz KA, Geoghegan WD, Jordon RE. The particulate (speckled-like thread) nuclear staining pattern: species and cellular distribution of Ro/SSA antigen. J Clin Lab Immunol. 1987;22(3):101–5.

    CAS  PubMed  Google Scholar 

  47. Wolin SL, Belair C, Boccitto M, Chen X, Sim S, Taylor DW, Wang HW. Non-coding Y RNAs as tethers and gates: insights from bacteria. RNA Biol. 2013;10(10):1602–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fabini G, Raijmakers R, Hayer S, Fouraux MA, Pruijn GJ, Steiner G. The heterogeneous nuclear ribonucleoproteins I and K interact with a subset of the ro ribonucleoprotein-associated Y RNAs in vitro and in vivo. J Biol Chem. 2001;276(23):20711–8.

    Article  CAS  PubMed  Google Scholar 

  49. Fouraux MA, Bouvet P, Verkaart S, van Venrooij WJ, Pruijn GJ. Nucleolin associates with a subset of the human Ro ribonucleoprotein complexes. J Mol Biol. 2002;320(3):475–88.

    Article  CAS  PubMed  Google Scholar 

  50. Kohn M, Lederer M, Wachter K, Huttelmaier S. Near-infrared (NIR) dye-labeled RNAs identify binding of ZBP1 to the noncoding Y3-RNA. RNA Biol. 2010;16(7):1420–8.

    Article  CAS  Google Scholar 

  51. Kowalski MP, Baylis HA, Krude T. Non-coding stem-bulge RNAs are required for cell proliferation and embryonic development in C. elegans. J Cell Sci. 2015;128(11):2118–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wolin SL, Sim S, Chen X. Nuclear noncoding RNA surveillance: is the end in sight? Trends Genet. 2012;28(7):306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hall AE, Dalmay T. Discovery of novel small RNAs in the quest to unravel genome complexity. Biochem Soc Trans. 2013;41(4):866–70.

    Article  CAS  PubMed  Google Scholar 

  54. Pruijn GJ, Simons FH, van Venrooij WJ. Intracellular localization and nucleocytoplasmic transport of Ro RNP components. Eur J Cell Biol. 1997;74(2):123–32.

    CAS  PubMed  Google Scholar 

  55. Zhang AT, Langley AR, Christov CP, Kheir E, Shafee T, Gardiner TJ, Krude T. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J Cell Sci. 2011;124(Pt 12):2058–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O’Brien CA, Margelot K, Wolin SL. Xenopus Ro ribonucleoproteins: members of an evolutionarily conserved class of cytoplasmic ribonucleoproteins. Proc Natl Acad Sci U S A. 1993;90(15):7250–4.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Simons FH, Pruijn GJ, van Venrooij WJ. Analysis of the intracellular localization and assembly of Ro ribonucleoprotein particles by microinjection into Xenopus laevis oocytes. J Cell Biol. 1994;125(5):981–8.

    Article  CAS  PubMed  Google Scholar 

  58. Farris AD, Puvion-Dutilleul F, Puvion E, Harley JB, Lee LA. The ultrastructural localization of 60-kDa Ro protein and human cytoplasmic RNAs: association with novel electron-dense bodies. Proc Natl Acad Sci U S A. 1997;94(7):3040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matera AG, Frey MR, Margelot K, Wolin SL. A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol. 1995;129(5):1181–93.

    Article  CAS  PubMed  Google Scholar 

  60. Chen X, Quinn AM, Wolin SL. Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation. Genes Dev. 2000;14(7):777–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen X, Smith JD, Shi H, Yang DD, Flavell RA, Wolin SL. The Ro autoantigen binds misfolded U2 small nuclear RNAs and assists mammalian cell survival after UV irradiation. Curr Biol. 2003;13(24):2206–11.

    Article  CAS  PubMed  Google Scholar 

  62. Kohn M, Pazaitis N, Huttelmaier S. Why YRNAs? About versatile RNAs and their functions. Biomol Ther. 2013;3(1):143–56.

    Google Scholar 

  63. Garcia EL, Onafuwa-Nuga A, Sim S, King SR, Wolin SL, Telesnitsky A. Packaging of host mY RNAs by murine leukemia virus may occur early in Y RNA biogenesis. J Virol. 2009;83(23):12526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang T, Tian C, Zhang W, Luo K, Sarkis PT, Yu L, Liu B, Yu Y, Yu XF. 7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J Virol. 2007;81(23):13112–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang Y, Mak J, Cao Q, Li Z, Wainberg MA, Kleiman L. Incorporation of excess wild-type and mutant tRNA(3Lys) into human immunodeficiency virus type 1. J Virol. 1994;68(12):7676–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Balasubramaniam M, Pandhare J, Dash C. Are microRNAs important players in HIV-1 infection? An update. Viruses. 2018;10(3).

    Google Scholar 

  67. Stake M, Singh D, Singh G, Marcela Hernandez J, Kaddis Maldonado R, Parent LJ, Boris-Lawrie K. HIV-1 and two avian retroviral 5′ untranslated regions bind orthologous human and chicken RNA binding proteins. Virology. 2015;486:307–20.

    Article  CAS  PubMed  Google Scholar 

  68. Telesnitsky A, Wolin SL. The host RNAs in retroviral particles. Viruses. 2016;8(8).

    Google Scholar 

  69. Eckwahl MJ, Sim S, Smith D, Telesnitsky A, Wolin SL. A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway. Genes Dev. 2015;29(6):646–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell. 2005;121(4):529–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen X, Sim S, Wurtmann EJ, Feke A, Wolin SL. Bacterial noncoding Y RNAs are widespread and mimic tRNAs. RNA Biol. 2014;20(11):1715–24.

    Article  CAS  Google Scholar 

  72. Christov CP, Gardiner TJ, Szuts D, Krude T. Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol Biol Cell. 2006;26(18):6993–7004.

    Article  CAS  Google Scholar 

  73. Gardiner TJ, Christov CP, Langley AR, Krude T. A conserved motif of vertebrate Y RNAs essential for chromosomal DNA replication. RNA Biol. 2009;15(7):1375–85.

    Article  CAS  Google Scholar 

  74. Wang I, Kowalski MP, Langley AR, Rodriguez R, Balasubramanian S, Hsu ST, Krude T. Nucleotide contributions to the structural integrity and DNA replication initiation activity of noncoding y RNA. Biochemistry. 2014;53(37):5848–63.

    Article  CAS  PubMed  Google Scholar 

  75. Kheir E, Krude T. Non-coding Y RNAs associate with early replicating euchromatin in concordance with the origin recognition complex. J Cell Sci. 2017;130(7):1239–50.

    Article  CAS  PubMed  Google Scholar 

  76. Krude T, Christov CP, Hyrien O, Marheineke K. Y RNA functions at the initiation step of mammalian chromosomal DNA replication. J Cell Sci. 2009;122(Pt 16):2836–45.

    Article  CAS  PubMed  Google Scholar 

  77. Christov CP, Trivier E, Krude T. Noncoding human Y RNAs are overexpressed in tumours and required for cell proliferation. Br J Cancer. 2008;98(5):981–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xue D, Shi H, Smith JD, Chen X, Noe DA, Cedervall T, Yang DD, Eynon E, Brash DE, Kashgarian M, Flavell RA, Wolin SL. A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. Proc Natl Acad Sci U S A. 2003;100(13):7503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fuchs G, Stein AJ, Fu C, Reinisch KM, Wolin SL. Structural and biochemical basis for misfolded RNA recognition by the Ro autoantigen. Nat Struct Mol Biol. 2006;13(11):1002–9.

    Article  CAS  PubMed  Google Scholar 

  80. Hogg JR, Collins K. Human Y5 RNA specializes a Ro ribonucleoprotein for 5S ribosomal RNA quality control. Genes Dev. 2007;21(23):3067–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Labbe JC, Hekimi S, Rokeach LA. Assessing the function of the Ro ribonucleoprotein complex using Caenorhabditis elegans as a biological tool. Biochem Cell Biol. 1999;77(4):349–54.

    Article  CAS  PubMed  Google Scholar 

  82. O’Brien CA, Wolin SL. A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev. 1994;8(23):2891–903.

    Article  PubMed  Google Scholar 

  83. Chen X, Taylor DW, Fowler CC, Galan JE, Wang HW, Wolin SL. An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell. 2013;153(1):166–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen X, Wurtmann EJ, Van Batavia J, Zybailov B, Washburn MP, Wolin SL. An ortholog of the Ro autoantigen functions in 23S rRNA maturation in D. radiodurans. Genes Dev. 2007;21(11):1328–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Driedonks TAP, Nolte-‘t Hoen ENM. Circulating Y-RNAs in extracellular vesicles and ribonucleoprotein complexes; implications for the immune system. Front Immunol. 2018;9:3164.

    Article  CAS  PubMed  Google Scholar 

  86. Katsanou V, Papadaki O, Milatos S, Blackshear PJ, Anderson P, Kollias G, Kontoyiannis DL. HuR as a negative posttranscriptional modulator in inflammation. Mol Cell. 2005;19(6):777–89.

    Article  CAS  PubMed  Google Scholar 

  87. Herdy B, Karonitsch T, Vladimer GI, Tan CS, Stukalov A, Trefzer C, Bigenzahn JW, Theil T, Holinka J, Kiener HP, Colinge J, Bennett KL, Superti-Furga G. The RNA-binding protein HuR/ELAVL1 regulates IFN-beta mRNA abundance and the type I IFN response. Eur J Immunol. 2015;45(5):1500–11.

    Article  CAS  PubMed  Google Scholar 

  88. Kohn M, Ihling C, Sinz A, Krohn K, Huttelmaier S. The Y3∗∗ ncRNA promotes the 3′ end processing of histone mRNAs. Genes Dev. 2015;29(19):1998–2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wilkins BJ, Molkentin JD. Calcineurin and cardiac hypertrophy: where have we been? Where are we going? J Physiol. 2002;541(Pt 1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Parra V, Rothermel BA. Calcineurin signaling in the heart: the importance of time and place. J Mol Cell Cardiol. 2017;103:121–36.

    Article  CAS  PubMed  Google Scholar 

  91. Jiang B, Zhang B, Liang P, Chen G, Zhou B, Lv C, Tu Z, Xiao X. Nucleolin protects the heart from ischaemia-reperfusion injury by up-regulating heat shock protein 32. Cardiovasc Res. 2013;99(1):92–101.

    Article  CAS  PubMed  Google Scholar 

  92. Gaiti F, Hatleberg WL, Tanurdzic M, Degnan BM. Sponge Long non-coding RNAs are expressed in specific cell types and conserved networks. Noncoding RNA. 2018;4(1).

    Google Scholar 

  93. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tebaldi T, Zuccotti P, Peroni D, Kohn M, Gasperini L, Potrich V, Bonazza V, Dudnakova T, Rossi A, Sanguinetti G, Conti L, Macchi P, D’Agostino V, Viero G, Tollervey D, Huttelmaier S, Quattrone A. HuD Is a neural translation enhancer acting on mTORC1-responsive genes and counteracted by the Y3 small non-coding RNA. Mol Cell. 2018;71(2):256–270 e210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bolognani F, Contente-Cuomo T, Perrone-Bizzozero NI. Novel recognition motifs and biological functions of the RNA-binding protein HuD revealed by genome-wide identification of its targets. Nucleic Acids Res. 2010;38(1):117–30.

    Article  CAS  PubMed  Google Scholar 

  96. Rother S, Meister G. Small RNAs derived from longer non-coding RNAs. Biochimie. 2011;93(11):1905–15.

    Article  PubMed  CAS  Google Scholar 

  97. Tuck AC, Tollervey D. RNA in pieces. Trends Genet. 2011;27(10):422–32.

    Article  CAS  PubMed  Google Scholar 

  98. Donovan J, Rath S, Kolet-Mandrikov D, Korennykh A. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. RNA. 2017;23(11):1660–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rutjes SA, van der Heijden A, Utz PJ, van Venrooij WJ, Pruijn GJ. Rapid nucleolytic degradation of the small cytoplasmic Y RNAs during apoptosis. J Biol Chem. 1999;274(35):24799–807.

    Article  CAS  PubMed  Google Scholar 

  100. Nicolas FE, Hall AE, Csorba T, Turnbull C, Dalmay T. Biogenesis of Y RNA-derived small RNAs is independent of the microRNA pathway. FEBS Lett. 2012;586(8):1226–30.

    Article  CAS  PubMed  Google Scholar 

  101. Meiri E, Levy A, Benjamin H, Ben-David M, Cohen L, Dov A, Dromi N, Elyakim E, Yerushalmi N, Zion O, Lithwick-Yanai G, Sitbon E. Discovery of microRNAs and other small RNAs in solid tumors. Nucleic Acids Res. 2010;38(18):6234–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Verhagen AP, Pruijn GJ. Are the Ro RNP-associated Y RNAs concealing microRNAs? Y RNA-derived miRNAs may be involved in autoimmunity. BioEssays. 2011;33(9):674–82.

    Article  CAS  PubMed  Google Scholar 

  103. Chen CJ, Heard E. Small RNAs derived from structural non-coding RNAs. Methods. 2013;63(1):76–84.

    Article  CAS  PubMed  Google Scholar 

  104. Langenberger D, Cakir MV, Hoffmann S, Stadler PF. Dicer-processed small RNAs: rules and exceptions. J Exp Zool Part B-Mol Dev Evol. 2013;320(1):35–46.

    Article  CAS  Google Scholar 

  105. Dhahbi JM, Spindler SR, Atamna H, Boffelli D, Mote P, Martin DI. 5′-YRNA fragments derived by processing of transcripts from specific YRNA genes and pseudogenes are abundant in human serum and plasma. Physiol Genomics. 2013;45(21):990–8.

    Article  CAS  PubMed  Google Scholar 

  106. Dhahbi JM. Circulating small noncoding RNAs as biomarkers of aging. Ageing Res Rev. 2014;17:86–98.

    Article  CAS  PubMed  Google Scholar 

  107. Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M, Hladik F. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014;42(11):7290–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Haderk F, Schulz R, Iskar M, Cid LL, Worst T, Willmund KV, Schulz A, Warnken U, Seiler J, Benner A, Nessling M, Zenz T, Gobel M, Durig J, Diederichs S, Paggetti J, Moussay E, Stilgenbauer S, Zapatka M, Lichter P, Seiffert M. Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci Immunol. 2017;2(13).

    Google Scholar 

  109. Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, Kreke M, Smith RR, Marban L, Marban E. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med. 2017;9(3):337–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cambier L, Giani JF, Liu W, Ijichi T, Echavez AK, Valle J, Marban E. Angiotensin II-induced end-organ damage in mice is attenuated by human exosomes and by an Exosomal Y RNA fragment. Hypertension. 2018;72(2):370–80.

    Article  CAS  PubMed  Google Scholar 

  111. Chakrabortty SK, Prakash A, Nechooshtan G, Hearn S, Gingeras TR. Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA. RNA. 2015;21(11):1966–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jhund PS, McMurray JJ. Heart failure after acute myocardial infarction: a lost battle in the war on heart failure? Circulation. 2008;118(20):2019–21.

    Article  PubMed  Google Scholar 

  113. Marban E, Cingolani E. Direct reprogramming: bypassing stem cells for therapeutics. J Am Med Assoc. 2015;314(1):19–20.

    Article  CAS  Google Scholar 

  114. Marban E. Breakthroughs in cell therapy for heart disease: focus on cardiosphere-derived cells. Mayo Clin Proc. 2014;89(6):850–8.

    Article  PubMed  Google Scholar 

  115. Barile L, Milano G, Vassalli G. Beneficial effects of exosomes secreted by cardiac-derived progenitor cells and other cell types in myocardial ischemia. Stem Cell Investig. 2017;4:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Tseliou E, Fouad J, Reich H, Slipczuk L, de Couto G, Aminzadeh M, Middleton R, Valle J, Weixin L, Marban E. Fibroblasts rendered Antifibrotic, Antiapoptotic, and Angiogenic by priming with Cardiosphere-derived extracellular membrane vesicles. J Am Coll Cardiol. 2015;66(6):599–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. de Couto G, Liu W, Tseliou E, Sun B, Makkar N, Kanazawa H, Arditi M, Marban E. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Investig. 2015;125(8):3147–62.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ibrahim A, Marban E. Exosomes: fundamental biology and roles in cardiovascular physiology. Annu Rev Physiol. 2016;78:67–83.

    Article  CAS  PubMed  Google Scholar 

  119. Vandergriff AC, de Andrade JB, Tang J, Hensley MT, Piedrahita JA, Caranasos TG, Cheng K. Intravenous cardiac stem cell-derived exosomes ameliorate cardiac dysfunction in doxorubicin induced dilated cardiomyopathy. Stem Cells Int. 2015;2015:960926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  121. Reed JH, Sim S, Wolin SL, Clancy RM, Buyon JP. Ro60 requires Y3 RNA for cell surface exposure and inflammation associated with cardiac manifestations of neonatal lupus. J Immunol. 2013;191(1):110–6.

    Article  CAS  PubMed  Google Scholar 

  122. Brucato A, Cimaz R, Caporali R, Ramoni V, Buyon J. Pregnancy outcomes in patients with autoimmune diseases and anti-Ro/SSA antibodies. Clin Rev Allergy Immunol. 2011;40(1):27–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brucato A, Frassi M, Franceschini F, Cimaz R, Faden D, Pisoni MP, Muscara M, Vignati G, Stramba-Badiale M, Catelli L, Lojacono A, Cavazzana I, Ghirardello A, Vescovi F, Gambari PF, Doria A, Meroni PL, Tincani A. Risk of congenital complete heart block in newborns of mothers with anti-Ro/SSA antibodies detected by counterimmunoelectrophoresis: a prospective study of 100 women. Arthritis Rheum. 2001;44(8):1832–5.

    Article  CAS  PubMed  Google Scholar 

  124. Buyon JP, Winchester R. Congenital complete heart block. A human model of passively acquired autoimmune injury. Arthritis Rheum. 1990;33(5):609–14.

    Article  CAS  PubMed  Google Scholar 

  125. Izmirly PM, Saxena A, Sahl SK, Shah U, Friedman DM, Kim MY, Buyon JP. Assessment of fluorinated steroids to avert progression and mortality in anti-SSA/Ro-associated cardiac injury limited to the fetal conduction system. Ann Rheum Dis. 2016;75(6):1161–5.

    Article  CAS  PubMed  Google Scholar 

  126. Izmirly PM, Saxena A, Kim MY, Wang D, Sahl SK, Llanos C, Friedman D, Buyon JP. Maternal and fetal factors associated with mortality and morbidity in a multi-racial/ethnic registry of anti-SSA/Ro-associated cardiac neonatal lupus. Circulation. 2011;124(18):1927–35.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994;179(4):1317–30.

    Article  CAS  PubMed  Google Scholar 

  128. Miranda-Carus ME, Boutjdir M, Tseng CE, DiDonato F, Chan EK, Buyon JP. Induction of antibodies reactive with SSA/Ro-SSB/La and development of congenital heart block in a murine model. J Immunol. 1998;161(11):5886–92.

    CAS  PubMed  Google Scholar 

  129. Clancy RM, Neufing PJ, Zheng P, O’Mahony M, Nimmerjahn F, Gordon TP, Buyon JP. Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block. J Clin Investig. 2006;116(9):2413–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Vollmer J, Tluk S, Schmitz C, Hamm S, Jurk M, Forsbach A, Akira S, Kelly KM, Reeves WH, Bauer S, Krieg AM. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med. 2005;202(11):1575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Clancy RM, Alvarez D, Komissarova E, Barrat FJ, Swartz J, Buyon JP. Ro60-associated single-stranded RNA links inflammation with fetal cardiac fibrosis via ligation of TLRs: a novel pathway to autoimmune-associated heart block. J Immunol. 2010;184(4):2148–55.

    Article  CAS  PubMed  Google Scholar 

  132. Hizir Z, Bottini S, Grandjean V, Trabucchi M, Repetto E. RNY (YRNA)-derived small RNAs regulate cell death and inflammation in monocytes/macrophages. Cell Death Dis. 2017;8(1):e2530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116(16):1832–44.

    Article  CAS  PubMed  Google Scholar 

  135. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation. 2003;108(14):1664–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

SD is funded by RO1 HL122547 and AHA SFRN grant.

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumya Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valkov, N., Das, S. (2020). Y RNAs: Biogenesis, Function and Implications for the Cardiovascular System. In: Xiao, J. (eds) Non-coding RNAs in Cardiovascular Diseases. Advances in Experimental Medicine and Biology, vol 1229. Springer, Singapore. https://doi.org/10.1007/978-981-15-1671-9_20

Download citation

Publish with us

Policies and ethics