Skip to main content

Quercetin-Loaded Nanomedicine as Nutritional Application

  • Chapter
  • First Online:
Nanomedicine for Bioactives

Abstract

The flavonol quercetin (3,3′,4′,5,7-pentahydroxyflavone) belongs to a class of plant secondary metabolites known as flavonoids. It exists in the daily diet of humans and is known for its numerous biological activities, including as anticancer, anti-infective, hepatoprotective agent, neuroprotective agent, antioxidant, and anti-inflammatory, and prevents cardiovascular disorders. Quercetin, because of its basic chemical structure, shows prominent antioxidant activity which possibly assists it to reduce free radicals from establishing resonance-stabilized phenoxyl radicals. However, poor aqueous solubility, chemical instability, and low oral bioavailability of quercetin have limited its applications. Quercetin digested in the human body (e.g., mouth, small intestine, liver, kidneys) suffers glucuronidation, sulfation, or methylation. To overcome these issues, nanoencapsulation of quercetin is performed which could significantly improve its stability, efficacy, and bioavailability. In this context, we have tried to discuss the utility of various quercetin-based nanoformulations including polymeric nanoparticles, lipid-based carriers, micelles, metallic nanoparticles, inclusion complexes, and conjugate-based encapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennet D, Kim S (2013) A transdermal delivery system to enhance quercetin nanoparticle permeability. J Biomater Sci 24(2):185–209

    Article  CAS  Google Scholar 

  2. Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F, Ruedi P (2006) Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother 50(4):1352–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balakrishnan S, Bhat FA, Raja Singh P, Mukherjee S, Elumalai P, Das S, Patra CR, Arunakaran J (2016) Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 49(6):678–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beninger CW, Hosfield GL (2003) Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J Agric Food Chem 51(27):7879–7883

    Article  CAS  PubMed  Google Scholar 

  5. Caddeo C, Diez-Sales O, Pons R, Fernandez-Busquets X, Fadda AM, Manconi M (2014) Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: in vivo and in vitro evaluation. Pharm Res 31(4):959–968

    Article  CAS  PubMed  Google Scholar 

  6. Jain S, Mehata MS (2017) Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep 7(15867):1–13

    Google Scholar 

  7. Kumar VD, Prasad PR, Singh SK (2015a) Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT Food Sci Technol 61(2):330–338

    Article  CAS  Google Scholar 

  8. Rathee S, Kamboj A (2018) Optimization and development of antidiabetic phytosomes by the Box-Behnken design. J Liposome Res 28(2):161–172

    Article  CAS  PubMed  Google Scholar 

  9. D’Andrea G (2015) Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 106:256–271

    Google Scholar 

  10. Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y, Zheng Y, Gou M, Huang M, Guo G, Huang N, Qian Z, Wei Y (2012) Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 4(22):7021–7030

    Article  CAS  PubMed  Google Scholar 

  11. Balestrin LA, Bidone J, Bortolin RC, Moresco K, Moreira JC, Teixeira HF (2016) Protective effect of a hydrogel containing Achyrocline satureioides extract-loaded nanoemulsion against UV-induced skin damage. J Photochem Photobiol B Biol 163:269–276

    Article  CAS  Google Scholar 

  12. Liu D, Hu H, Lin Z, Chen D, Zhu Y, Hou S, Shi X (2013a) Quercetin deformable liposome: preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. J Photochem Photobiol B Biol 127:8–17

    Article  CAS  Google Scholar 

  13. Liu H, Xue JX, Li X, Ao R, Lu Y (2013b) Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model. Oncol Lett 6(2):453–459

    Article  PubMed  PubMed Central  Google Scholar 

  14. Verma SK, Rastogi S, Arora I, Javed K, Akhtar M, Samim M (2016) Nanoparticle based delivery of quercetin for the treatment of carbon tetrachloride mediated liver cirrhosis in rats. J Biomed Nanotechnol 12(2):274–285

    Article  CAS  PubMed  Google Scholar 

  15. Riva A, Ronchi M, Petrangolini G, Bosisio S, Allegrini P (2019) Improved Oral absorption of quercetin from quercetin phytosome(R), a new delivery system based on food grade lecithin. Eur J Drug Metab Pharmacokinet 44(2):169–177

    Article  CAS  PubMed  Google Scholar 

  16. Wang G, Wang JJ, Chen XL, Du L, Li F (2016) Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo. J Control Release 235:276–290

    Article  CAS  PubMed  Google Scholar 

  17. Ganesan P, Ko HM, Kim IS, Choi DK (2015) Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int J Nanomedicine 10:6757–6772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hussain A, Singh S, Das SS, Anjireddy K, Karpagam S, Shakeel F (2019) Nanomedicines as drug delivery carriers of anti-tubercular drugs: from pathogenesis to infection control. Curr Drug Deliv 16(5):400–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caddeo C, Diez-Sales O, Pons R, Carbone C, Ennas G, Puglisi G, Fadda AM, Manconi M (2016a) Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. J Colloid Interface Sci 461:69–78

    Article  CAS  PubMed  Google Scholar 

  20. Caddeo C, Nacher A, Vassallo A, Armentano MF, Pons R, Fernandez-Busquets X, Carbone C, Valenti D, Fadda AM, Manconi M (2016b) Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int J Pharm 513(1–2):153–163

    Article  CAS  PubMed  Google Scholar 

  21. Wang BL, Gao X, Men K, Qiu J, Yang B, Gou ML, Huang MJ, Huang N, Qian ZY, Zhao X, Wei YQ (2012) Treating acute cystitis with biodegradable micelle-encapsulated quercetin. Int J Nanomedicine 7:2239–2247

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moussa M, Goldberg SN, Kumar G, Sawant RR, Levchenko T, Torchilin VP, Ahmed M (2014) Nanodrug-enhanced radiofrequency tumor ablation: effect of micellar or liposomal carrier on drug delivery and treatment efficacy. PLoS One 9(8):e102727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kumar VD, Verma PR, Singh SK, Viswanathan S (2015b) LC-ESI-MS/MS analysis of quercetin in rat plasma after oral administration of biodegradable nanoparticles. Biomed Chromatogr 29(11):1731–1736

    Article  CAS  Google Scholar 

  24. Chen SQ, Wang C, Tao S, Wang YX, Hu FQ, Yuan H (2018) Rational design of redox-responsive and P-gp-inhibitory lipid nanoparticles with high entrapment of paclitaxel for tumor therapy. Adv Healthc Mater 7(17):e1800485

    Article  PubMed  CAS  Google Scholar 

  25. Ojeda-Serna IE, Rocha-Guzman NE, Gallegos-Infante JA, Chairez-Ramirez MH, Rosas-Flores W, Perez-Martinez JD, Gonzalez-Laredo RF (2019) Water-in-oil organogel based emulsions as a tool for increasing bioaccessibility and cell permeability of poorly water-soluble nutraceuticals. Food Res Int 120:415–424

    Article  CAS  PubMed  Google Scholar 

  26. Omwenga EO, Hensel A, Shitandi A, Goycoolea FM (2018) Chitosan nanoencapsulation of flavonoids enhances their quorum sensing and biofilm formation inhibitory activities against an E. coli Top 10 biosensor. Colloids Surf B Biointerfaces 164:125–133

    Article  CAS  PubMed  Google Scholar 

  27. Balakrishnan S, Mukherjee S, Das S, Bhat FA, Raja Singh P, Patra CR, Arunakaran J (2017) Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem Funct 35(4):217–231

    Article  CAS  PubMed  Google Scholar 

  28. Srisa-Nga K, Mankhetkorn S, Okonogi S, Khonkarn R (2018) Delivery of superparamagnetic polymeric micelles loaded with quercetin to hepatocellular carcinoma cells. J Pharm Sci. https://doi.org/10.1016/j.xphs.2018.08.008

  29. Yuan Y, Peng Q, Gurunathan S (2017) Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int J Mol Sci 18(3):E569

    Article  PubMed  CAS  Google Scholar 

  30. Mittal AK, Kumar S, Banerjee UC (2014) Quercetin and gallic acid mediated synthesis of bimetallic (Ag-Se) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci 431:194–199

    Article  CAS  PubMed  Google Scholar 

  31. Yun J, Lee H, Ko HJ, Woo ER, Lee DG (2015) Fungicidal effect of isoquercitrin via inducing membrane disturbance. Biochim Biophys Acta 1848(2):695–701

    Article  CAS  PubMed  Google Scholar 

  32. Bidone J, Argenta DB, Kratz J, Pettenuzzo LF, Horn AP, Koester LC, Bassani VL, Simões CO, Teixeira HF (2015) Antiherpes activity and skin/mucosa distribution of flavonoids from achyrocline satureioides extract incorporated into topical nanoemulsions. Biomed Res Int 8:1–7

    Article  CAS  Google Scholar 

  33. Sun D, Zhang W, Li N, Zhao Z, Mou Z, Yang E, Wang W (2016a) Silver nanoparticles-quercetin conjugation to siRNA against drug-resistant Bacillus subtilis for effective gene silencing: in vitro and in vivo. Mater Sci Eng C 63:522–534

    Article  CAS  Google Scholar 

  34. Sun D, Li N, Zhang W, Zhao Z, Mou Z, Huang D, Liu J, Wang W (2016b) Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf B Biointerfaces 148:116–129

    Article  CAS  PubMed  Google Scholar 

  35. Sun D, Zhang W, Mou Z, Chen Y, Guo F, Yang E, Wang W (2017) Transcriptome analysis reveals silver nanoparticle-decorated quercetin antibacterial molecular mechanism. ACS Appl Mater Interfaces 9(11):10047–10060

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen HT, Goycoolea FM (2017) Chitosan/cyclodextrin/TPP nanoparticles loaded with quercetin as novel bacterial quorum sensing inhibitors. Molecules 22(1975):3–23

    Google Scholar 

  37. Li F, Jin H, Xiao J, Yin X, Liu X, Li D, Huang Q (2018) The simultaneous loading of catechin and quercetin on chitosan based nanoparticles as effective antioxidant and antibacterial agent. Food Res Int 111:351–360

    Google Scholar 

  38. Yu L, Shang F, Chen X, Sun D, Xue T (2018) The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ 6:e5711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lotha R, SriSundaramoorthy N, Shamprasad BR, Nagarajan S, Sivasubramanian A (2018) Plant nutraceuticals (Quercetrin and Afzelin) capped silver nanoparticles exert potent antibiofilm effect against food borne pathogen Salmonella enterica serovar typhimurium and curtail planktonic growth in zebrafish infection model. Microb Pathog 120:109–118

    Article  CAS  PubMed  Google Scholar 

  40. Sowmya C, Lavakumar V, Venkateshan N, Ravichandiran V, Saigopal DVR (2018) Exploration of Phyllanthus acidus mediated silver nanoparticles and its activity against infectious bacterial pathogen. Chem Cent J 12(1):1–9

    Article  CAS  Google Scholar 

  41. Zhou Y, Tang R (2018) Facile and eco-friendly fabrication of colored and bioactive silk materials using silver nanoparticles synthesized by two flavonoids. Polymers 4(10):1–15

    Google Scholar 

  42. Mittra B, Saha A, Chowdhury AR, Pal C, Mandal S, Mukhopadhyay S, Bandyopadhyay S, Majumder HK (2000) Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol Med 6(6):527–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sarkar S, Mandal S, Sinha J, Mukhopadhyay S, Das N, Basu MK (2002) Quercetin: critical evaluation as an antileishmanial agent in vivo in hamsters using different vesicular delivery modes. J Drug Target 10(8):573–578

    Article  CAS  PubMed  Google Scholar 

  44. Gupta S, Moulik SP, Lala S, Basu MK, Sanyal SK, Datta S (2005) Designing and testing of an effective oil-in-water microemulsion drug delivery system for in vivo application. Drug Deliv 12:267–273

    Article  CAS  PubMed  Google Scholar 

  45. Sen G, Mandal S, Roy SR, Mukhopadhyay S, Biswas T (2005) Therapeutic use of quercetin in the control of infection and anemia associated with visceral leishmaniasis. Free Radic Biol Med 38:1257–1264

    Article  CAS  PubMed  Google Scholar 

  46. Sen G, Biswas D, Ray M, Biswas T (2007) Albumin–quercetin combination offers a therapeutic advantage in the prevention of reduced survival of erythrocytes in visceral leishmaniasis. Blood Cell Mol Dis 39:245–254

    Article  CAS  Google Scholar 

  47. Sen G, Mukhopadhyay S, Ray M, Biswas T (2008) Quercetin interferes with iron metabolism in Leishmania donovani and targets ribonucleotide reductase to exert leishmanicidal activity. J Antimicrob Chemother 61:1066–1075

    Article  CAS  PubMed  Google Scholar 

  48. Marin C, Boutaleb-Charki S, Diaz JG, Huertas O, Rosales MJ, Perez-Cordon G, Guitierrez-Sanchez R, Sanchez-Moreno M (2009) Antileishmaniasis Activity of Flavonoids from Consolida oliWeriana. J Nat Prod 72(6):1069–1074

    Article  CAS  PubMed  Google Scholar 

  49. Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, Almeida-Amaral EE (2011) Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One 6(2):e14666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Das S, Roy P, Mondal S, Bera T, Mukherjee A (2013) One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf B Biointerfaces 107:27–34

    Article  CAS  PubMed  Google Scholar 

  51. Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, Almeida-Amaral EE (2013) Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes. J Nat Prod 76(8):1505–1508

    Article  CAS  PubMed  Google Scholar 

  52. Sousa-Batista AJ, Poletto FS, Philipon C, Guterres SS, Pohlmann AR, Rossi-Bergmann B (2017) Lipid-core nanocapsules increase the oral efficacy of quercetin in cutaneous leishmaniasis. Parasitology 144(13):1769–1774

    Article  CAS  PubMed  Google Scholar 

  53. Mukhopadhyay P, Maity S, Mandal S, Chakraborti AS, Prajapati AK, Kundu PP (2018) Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym 182:42–51

    Article  CAS  PubMed  Google Scholar 

  54. Ebrahimpour S, Esmaeili A, Beheshti S (2018) Effect of quercetin-conjugated superparamagnetic iron oxide nanoparticles on diabetes-induced learning and memory impairment in rats. Int J Nanomedicine 13:6311–6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maity BK, Vishvakarma V, Surendran D, Rawat A, Das A, Pramanik S, Arfin N, Maiti S (2018) Spontaneous fluctuations can guide drug design strategies for structurally disordered proteins. Biochemistry 57(28):4206–4213

    Article  CAS  PubMed  Google Scholar 

  56. Landi-Librandi AP, de Oliveira CA, Azzolini AE, Kabeya LM, Del Ciampo JO, Bentley MV, Lucisano-Valim YM (2011) In vitro evaluation of the antioxidant activity of liposomal flavonols by the HRP-H2O2-luminol system. J Microencapsul 28(4):258–267

    Article  CAS  PubMed  Google Scholar 

  57. Kumari A, Yadav SK, Pakade YB, Kumar V, Singh B, Chaudhary A, Yadav SC (2011) Nanoencapsulation and characterization of Albizia chinensis isolated antioxidant quercitrin on PLA nanoparticles. Colloids Surf B Biointerfaces 82(1):224–232

    Article  CAS  PubMed  Google Scholar 

  58. Landi-Librandi AP, Caleiro Seixas Azzolini AE, de Oliveira CA, Lucisano-Valim YM (2012a) Inhibitory activity of liposomal flavonoids during oxidative metabolism of human neutrophils upon stimulation with immune complexes and phorbol ester. Drug Deliv 19(4):177–187

    Article  CAS  PubMed  Google Scholar 

  59. Landi-Librandi AP, Chrysostomo TN, Caleiro Seixas Azzolini AE, Marzocchi-Machado CM, de Oliveira CA, Lucisano-Valim YM (2012b) Study of quercetin-loaded liposomes as potential drug carriers: in vitro evaluation of human complement activation. J Liposome Res 22(2):89–99

    Article  CAS  PubMed  Google Scholar 

  60. Azofeifa G, Quesada S, Boudard F, Morena M, Cristol JP, Perez AM, Vaillant F, Michel A (2013) Antioxidant and anti-inflammatory in vitro activities of phenolic compounds from tropical highland blackberry (Rubus adenotrichos). J Agric Food Chem 61(24):5798–5804

    Article  CAS  PubMed  Google Scholar 

  61. Lee GH, Lee SJ, Jeong SW, Kim HC, Park GY, Lee SG, Choi JH (2016) Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles. Colloids Surf B Biointerfaces 143:511–517

    Article  CAS  PubMed  Google Scholar 

  62. Strugala P, Tronina T, Huszcza E, Gabrielska J (2017) Bioactivity in vitro of quercetin glycoside obtained in beauveria bassiana culture and its interaction with liposome membranes. Molecules 22(9). https://doi.org/10.3390/molecules22091520

  63. Abd El-Fattah AI, Fathy MM, Ali ZY, El-Garawany AEA, Mohamed EK (2017) Enhanced therapeutic benefit of quercetin-loaded phytosome nanoparticles in ovariectomized rats. Chem Biol Interact 271:30–38

    Article  CAS  PubMed  Google Scholar 

  64. Aithal GC, Nayak UY, Mehta C, Narayan R, Gopalkrishna P, Pandiyan S, Garg S (2018) Localized in situ nanoemulgel drug delivery system of quercetin for periodontitis: development and computational simulations. Molecules 23(6). https://doi.org/10.3390/molecules23061363

  65. Ozdal ZD, Sahmetlioglu E, Narin I, Cumaoglu A (2019) Synthesis of gold and silver nanoparticles using flavonoid quercetin and their effects on lipopolysaccharide induced inflammatory response in microglial cells. 3 Biotech 9(6):212

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ratty AK, Sunamoto J, Das NP (1988) Interaction of flavonoids with 1,1-diphenyl-2-picrylhydrazyl free radical, liposomal membranes and soybean lipoxygenase-1. Biochem Pharmacol 37(6):989–995

    Article  CAS  PubMed  Google Scholar 

  67. Terao J, Piskula M, Yao Q (1994) Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers. Arch Biochem Biophys 308(1):278–284

    Article  CAS  PubMed  Google Scholar 

  68. Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F (1995) Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic Biol Med 19(4):481–486

    Article  CAS  PubMed  Google Scholar 

  69. Gordon MH, Roedig-Penman A (1998) Antioxidant activity of quercetin and myricetin in liposomes. Chem Phys Lipids 97:79–85

    Article  CAS  PubMed  Google Scholar 

  70. Liao K, Yin M (2000) Individual and combined antioxidant effects of seven phenolic agents in human erythrocyte membrane ghosts and phosphatidylcholine liposome systems: importance of the partition coefficient. J Agric Food Chem 48(6):2266–2270

    Article  CAS  PubMed  Google Scholar 

  71. Shirai M, Moon JH, Tsushida T, Terao J (2001) Inhibitory effect of a quercetin metabolite, quercetin 3-O-beta-D-glucuronide, on lipid peroxidation in liposomal membranes. J Agric Food Chem 49(11):5602–5608

    Article  CAS  PubMed  Google Scholar 

  72. Filip R, Ferraro GE (2003) Researching on new species of “Mate”: ilex brevicuspis: phytochemical and pharmacology study. Eur J Nutr 42(1):50–54

    Article  CAS  PubMed  Google Scholar 

  73. Zou Y, Lu Y, Wei D (2004) Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J Agric Food Chem 52(16):5032–5039

    Article  CAS  PubMed  Google Scholar 

  74. Murata Y, Osaki K, Shimoishi Y, Baba N, Tada M (2004) Degradation of ethyl docosahexaenoate by gamma-ray irradiation and suppression of this degradation by antioxidants. Biosci Biotechnol Biochem 68(3):743–745

    Article  CAS  PubMed  Google Scholar 

  75. Ly TN, Hazama C, Shimoyamada M, Ando H, Kato K, Yamauchi R (2005) Antioxidative compounds from the outer scales of onion. J Agric Food Chem 53(21):8183–8189

    Article  CAS  PubMed  Google Scholar 

  76. Gabrielska J, Soczynska-Kordala M, Hladyszowski J, Zylka R, Miskiewicz J, Przestalski S (2006) Antioxidative effect of quercetin and its equimolar mixtures with phenyltin compounds on liposome membranes. J Agric Food Chem 54(20):7735–7746

    Article  CAS  PubMed  Google Scholar 

  77. Ghosh D, Ghosh S, Sarkar S, Ghosh A, Das N, Das Saha K, Mandal AK (2010) Quercetin in vesicular delivery systems: evaluation in combating arsenic-induced acute liver toxicity associated gene expression in rat model. Chem Biol Interact 186(1):61–71

    Article  CAS  PubMed  Google Scholar 

  78. Liang R, Chen CH, Han RM, Zhang JP, Skibsted LH (2010) Thermodynamic versus kinetic control of antioxidant synergism between beta-carotene and (iso)flavonoids and their glycosides in liposomes. J Agric Food Chem 58(16):9221–9227

    Article  CAS  PubMed  Google Scholar 

  79. Bernardy N, Romio AP, Barcelos EI, Pizzol CD, Dora CL, Lemos-Senna E, Araujo PHH, Sayer C (2010) Nanoencapsulation of quercetin via miniemulsion polymerization. J Biomed Nanotechnol 6(2):181–186

    Article  CAS  PubMed  Google Scholar 

  80. Sahoo NG, Kakran M, Shaal LA, Li L, Muller RH, Pal M, Tan LP (2011) Preparation and characterization of quercetin nanocrystals. J Pharm Sci 100(6):2379–2390

    Article  CAS  PubMed  Google Scholar 

  81. Parmar A, Singh K, Bahadur A, Marangoni G, Bahadur P (2011) Interaction and solubilization of some phenolic antioxidants in Pluronic(R) micelles. Colloids Surf B Biointerfaces 86(2):319–326

    Article  CAS  PubMed  Google Scholar 

  82. Weiss-Angeli V, Poletto FS, de Marco SL, Salvador M, da Silveira NP, Guterres SS, Pohlmann AR (2012) Sustained antioxidant activity of quercetin-loaded lipid-core nanocapsules. J Nanosci Nanotechnol 12(3):2874–2880

    Article  CAS  PubMed  Google Scholar 

  83. Park SN, Lee MH, Kim SJ, Yu ER (2013) Preparation of quercetin and rutin-loaded ceramide liposomes and drug-releasing effect in liposome-in-hydrogel complex system. Biochem Biophys Res Commun 435(3):361–366

    Article  CAS  PubMed  Google Scholar 

  84. Bose S, Du Y, Takhistov P, Michniak-Kohn B (2013) Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int J Pharm 441(1–2):56–66

    Article  CAS  PubMed  Google Scholar 

  85. Yagolnik EA, Tarahovsky YS, Klenina IB, Kuznetsova SM, Muzafarov EN, Kim YA (2014) Study of membranotropic and antioxidant activity of flavonoids and their complexes with ferric iron. Biophysics 58(5):646–652

    Article  CAS  Google Scholar 

  86. Tavano L, Muzzalupo R, Picci N, de Cindio B (2014) Co-encapsulation of antioxidants into niosomal carriers: gastrointestinal release studies for nutraceutical applications. Colloids Surf B Biointerfaces 114:82–88

    Article  CAS  PubMed  Google Scholar 

  87. Jeon S, Yoo CY, Park SN (2015) Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery. Colloids Surf B Biointerfaces 129:7–14

    Article  CAS  PubMed  Google Scholar 

  88. Linkeviciute A, Misiunas A, Naujalis E, Barauskas J (2015) Preparation and characterization of quercetin-loaded lipid liquid crystalline systems. Colloids Surf B Biointerfaces 128:296–303

    Article  CAS  PubMed  Google Scholar 

  89. Gupta P, Authimoolam SP, Hilt JZ, Dziubla TD (2015) Quercetin conjugated poly(beta-amino esters) nanogels for the treatment of cellular oxidative stress. Acta Biomater 27:194–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zorzi GK, Caregnato F, Moreira JC, Teixeira HF, Carvalho EL (2016) Antioxidant Effect of nanoemulsions containing extract of achyrocline satureioides (Lam) D.C.-asteraceae. AAPS PharmSciTech 17(4):844–850

    Article  CAS  PubMed  Google Scholar 

  91. Kaur K, Kumar R, Mehta SK (2016) Formulation of saponin stabilized nanoemulsion by ultrasonic method and its role to protect the degradation of quercitin from UV light. Ultrason Sonochem 31:29–38

    Article  CAS  PubMed  Google Scholar 

  92. Rezaei-Sadabady R, Eidi A, Zarghami N, Barzegar A (2016) Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artificial Cells Nanomed Biotechnol 44(1):128–134

    Article  CAS  Google Scholar 

  93. Altunkaya A, Gokmen V, Skibsted LH (2016) pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants. Food Chem 190:25–32

    Article  CAS  PubMed  Google Scholar 

  94. Moretti E, Mazzi L, Bonechi C, Salvatici MC, Iacoponi F, Rossi C, Collodel G (2016) Effect of Quercetin-loaded liposomes on induced oxidative stress in human spermatozoa. Reprod Toxicol 60:140–147

    Article  CAS  PubMed  Google Scholar 

  95. Anwer MK, Al-Mansoor MA, Jamil S, Al-Shdefat R, Ansari MN, Shakeel F (2016) Development and evaluation of PLGA polymer based nanoparticles of quercetin. Int J Biol Macromol 92:213–219

    Article  CAS  PubMed  Google Scholar 

  96. Aluani D, Tzankova V, Kondeva-Burdina M, Yordanov Y, Nikolova E, Odzhakov F, Apostolov A, Markova T, Yoncheva K (2017) capital IE, cyrillicvaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int J Biol Macromol 103:771–782

    Article  CAS  PubMed  Google Scholar 

  97. Huang M, Su E, Zheng F, Tan C (2017) Encapsulation of flavonoids in liposomal delivery systems: the case of quercetin, kaempferol and luteolin. Food Funct 8(9):3198–3208

    Article  CAS  PubMed  Google Scholar 

  98. Singh O, Kaur R, Mahajan RK (2017) Flavonoid-surfactant interactions: A detailed physicochemical study. Spectrochim Acta A Mol Biomol Spectrosc 170:77–88

    Article  CAS  PubMed  Google Scholar 

  99. Rodriguez EB, Almeda RA, Vidallon MLP, Reyes CT (2018) Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids. J Sci Food Agric. https://doi.org/10.1002/jsfa.9396

  100. Singh S, Kushwah V, Agrawal AK, Jain S (2018) Insulin- and quercetin-loaded liquid crystalline nanoparticles: implications on oral bioavailability, antidiabetic and antioxidant efficacy. Nanomedicine 13(5):521–537

    Article  CAS  PubMed  Google Scholar 

  101. Farrag Y, Ide W, Montero B, Rico M, Rodriguez-Llamazares S, Barral L, Bouza R (2018) Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. Int J Biol Macromol 114:426–433

    Article  CAS  PubMed  Google Scholar 

  102. Najafabadi ER, Kazemipour N, Esmaeili A, Beheshti S, Nazifi S (2018a) Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacol Toxicol 19(1):59

    Article  CAS  Google Scholar 

  103. Najafabadi RE, Kazemipour N, Esmaeili A, Beheshti S, Nazifi S (2018b) Quercetin prevents body weight loss due to the using of superparamagnetic iron oxide nanoparticles in rat. Adv Biomed Res 7:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Sarkar S, Das N (2006) Mannosylated liposomal flavonoid in combating age-related ischemia-reperfusion induced oxidative damage in rat brain. Mech Ageing Dev 127(4):391–397

    Article  CAS  PubMed  Google Scholar 

  105. Matsuzaki K, Noguch T, Wakabayashi M, Ikeda K, Okada T, Ohashi Y, Hoshino M, Naiki H (2007) Inhibitors of amyloid beta-protein aggregation mediated by GM1-containing raft-like membranes. Biochim Biophys Acta 1768(1):122–130

    Article  CAS  PubMed  Google Scholar 

  106. Priprem A, Watanatorn J, Sutthiparinyanont S, Phachonpai W, Muchimapura S (2008) Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine 4(1):70–78

    Article  CAS  PubMed  Google Scholar 

  107. Rivera F, Costa G, Abin A, Urbanavicius J, Arruti C, Casanova G, Dajas F (2008) Reduction of ischemic brain damage and increase of glutathione by a liposomal preparation of quercetin in permanent focal ischemia in rats. Neurotox Res 13(2):105–114

    Article  CAS  PubMed  Google Scholar 

  108. Dhawan S, Kapil R, Singh B (2011) Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 63(3):342–351

    Article  CAS  PubMed  Google Scholar 

  109. Ghosh A, Sarkar S, Mandal AK, Das N (2013) Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One 8(4):e57735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bagad M, Khan ZA (2015) Poly(n-butylcyanoacrylate) nanoparticles for oral delivery of quercetin: preparation, characterization, and pharmacokinetics and biodistribution studies in Wistar rats. Int J Nanomedicine 10:3921–3935

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Galho AR, Cordeiro MF, Ribeiro SA, Marques MS, Antunes MF, Luz DC, Hadrich G, Muccillo-Baisch AL, Barros DM, Lima JV, Dora CL, Horn AP (2016) Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats. Nanotechnology 27(17):175101

    Article  CAS  PubMed  Google Scholar 

  112. Kuo YC, Tsao CW (2017) Neuroprotection against apoptosis of SK-N-MC cells using RMP-7 and lactoferrin-grafted liposomes carrying quercetin. Int J Nanomedicine 12:2857–2869

    Google Scholar 

  113. Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Abdur Rub R, Ahmad FJ (2018) Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artificial Cells Nanomed Biotechnol 46(4):717–729

    Article  CAS  Google Scholar 

  114. Ghosh S, Sarkar S, Choudhury ST, Ghosh T, Das N (2017) Triphenyl phosphonium coated nano-quercetin for oral delivery: neuroprotective effects in attenuating age related global moderate cerebral ischemia reperfusion injury in rats. Nanomedicine 13(8):2439–2450

    Article  CAS  PubMed  Google Scholar 

  115. Oliveira AI, Pinho C, Fonte P, Sarmento B, Dias ACP (2018) Development, characterization, antioxidant and hepatoprotective properties of poly(Ɛ-caprolactone) nanoparticles loaded with a neuroprotective fraction of Hypericum perforatum. Int J Biol Macromol 110:185–196

    Article  CAS  PubMed  Google Scholar 

  116. Rishitha N, Muthuraman A (2018) Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci 199:80–87

    Article  CAS  PubMed  Google Scholar 

  117. Amanzadeh E, Esmaeili A, Abadi REN, Kazemipour N, Pahlevanneshan Z, Beheshti S (2019) Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci Rep 9(1):6876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Katebi S, Esmaeili A, Ghaedi K, Zarrabi A (2019) Superparamagnetic iron oxide nanoparticles combined with NGF and quercetin promote neuronal branching morphogenesis of PC12 cells. Int J Nanomedicine 14:2157–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kuo YC, Chen CL, Rajesh R (2019) Optimized liposomes with transactivator of transcription peptide and anti-apoptotic drugs to target hippocampal neurons and prevent tau-hyperphosphorylated neurodegeneration. Acta Biomater 87:207–222

    Article  CAS  PubMed  Google Scholar 

  120. Liu Y, Zhou H, Yin T, Gong Y, Yuan G, Chen L, Liu J (2019) Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J Colloid Interface Sci 552:388–400

    Google Scholar 

  121. Mandic L, Sadzak A, Strasser V, Baranovic G, Domazet Jurasin D, Sikiric MD, Segota S (2019) Enhanced protection of biological membranes during lipid peroxidation: study of the interactions between flavonoid loaded mesoporous silica nanoparticles and model cell membranes. Int J Mol Sci 20(11). https://doi.org/10.3390/ijms20112709

  122. Soloviev A, Stefanov A, Parshikov A, Khromov A, Moibenko A, Kvotchina L, Balavoine G, Geletii Y (2002) Arrhythmogenic peroxynitrite-induced alterations in mammalian heart contractility and its prevention with quercetin-filled liposomes. Cardiovasc Toxicol 2(2):129–140

    Article  CAS  PubMed  Google Scholar 

  123. Dugas TR, Brewer G, Longwell M, Fradella T, Braun J, Astete CE, Jennings MH, Sabliov CM (2019) Nanoentrapped polyphenol coating for sustained drug release from a balloon catheter. J Biomed Mater Res B Appl Biomater 107(3):646–651

    Article  CAS  PubMed  Google Scholar 

  124. Long D, Shang Y, Qiu Y, Zhou B, Yang P (2018) A single-cell analysis platform for electrochemiluminescent detection of platelets adhesion to endothelial cells based on Au@DL-ZnCQDs nanoprobes. Biosens Bioelectron 102:553–559

    Article  CAS  PubMed  Google Scholar 

  125. Mandal AK, Sinha J, Mandal S, Mukhopadhyay S, Das N (2002) Targeting of liposomal flavonoid to liver in combating hepatocellular oxidative damage. Drug Deliv 9(3):181–185

    Article  CAS  PubMed  Google Scholar 

  126. Mandal AK, Das N (2005) Sugar coated liposomal flavonoid: a unique formulation in combating carbontetrachloride induced hepatic oxidative damage. J Drug Target 13(5):305–315

    Article  CAS  PubMed  Google Scholar 

  127. Mandal AK, Das S, Basu MK, Chakrabarti RN, Das N (2007) Hepatoprotective activity of liposomal flavonoid against arsenite-induced liver fibrosis. J Pharmacol Exp Ther 320(3):994–1001

    Article  CAS  PubMed  Google Scholar 

  128. Ghosh A, Mandal AK, Sarkar S, Das N (2011a) Hepatoprotective and neuroprotective activity of liposomal quercetin in combating chronic arsenic induced oxidative damage in liver and brain of rats. Drug Deliv 18(6):451–459

    Article  CAS  PubMed  Google Scholar 

  129. Ghosh S, Dungdung SR, Chowdhury ST, Mandal AK, Sarkar S, Ghosh D, Das N (2011b) Encapsulation of the flavonoid quercetin with an arsenic chelator into nanocapsules enables the simultaneous delivery of hydrophobic and hydrophilic drugs with a synergistic effect against chronic arsenic accumulation and oxidative stress. Free Radic Biol Med 51(10):1893–1902

    Article  CAS  PubMed  Google Scholar 

  130. Wan Y, Tang MH, Chen XC, Chen LJ, Wei YQ, Wang YS (2014) Inhibitory effect of liposomal quercetin on acute hepatitis and hepatic fibrosis induced by concanavalin A. Braz J Med Biol Res 47(8):655–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sarkar A, Sil PC (2014) Iron oxide nanoparticles mediated cytotoxicity via PI3K/AKT pathway: role of quercetin. Food Chem Toxicol 71:106–115

    Article  CAS  PubMed  Google Scholar 

  132. Schwingel TE, Klein CP, Nicoletti NF, Dora CL, Hadrich G, Bica CG, Lopes TG, da Silva VD, Morrone FB (2014) Effects of the compounds resveratrol, rutin, quercetin, and quercetin nanoemulsion on oxaliplatin-induced hepatotoxicity and neurotoxicity in mice. Naunyn Schmiedeberg’s Arch Pharmacol 387(9):837–848

    Google Scholar 

  133. Karthivashan G, Masarudin MJ, Kura AU, Abas F, Fakurazi S (2016) Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique. Int J Nanomedicine 11:3417–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tzankova V, Aluani D, Kondeva-Burdina M, Yordanov Y, Odzhakov F, Apostolov A, Yoncheva K (2017) Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 92:569–579

    Article  CAS  PubMed  Google Scholar 

  135. Xu MX, Wang M, Yang WW (2017) Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-κB signaling and Nrf2 pathway in high fat diet fed mice. Int J Nanomed 12:327–345

    Google Scholar 

  136. Abdelhalim MAK, Moussa SAA, Qaid HAY (2018) The protective role of quercetin and arginine on gold nanoparticles induced hepatotoxicity in rats. Int J Nanomedicine 13:2821–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Eftekhari A, Ahmadian E, Panahi-Azar V, Hosseini H, Tabibiazar M, Maleki Dizaj S (2018) Hepatoprotective and free radical scavenging actions of quercetin nanoparticles on aflatoxin B1-induced liver damage: in vitro/in vivo studies. Artificial Cells Nanomed Biotechnol 46(2):411–420

    Article  CAS  Google Scholar 

  138. Fadda LM, Hagar H, Mohamed AM, Ali HM (2018) Quercetin and idebenone ameliorate oxidative stress, inflammation, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in rat liver. Dose Response 16(4):1–9

    Article  CAS  Google Scholar 

  139. Palle S, Neerati P (2018) Quercetin nanoparticles alter pharmacokinetics of bromocriptine, reflecting its enhanced inhibitory action on liver and intestinal CYP 3A enzymes in rats. Xenobiotica 48(10):1028–1036

    Article  CAS  PubMed  Google Scholar 

  140. Suke SG, Sherekar P, Kahale V, Patil S, Mundhada D, Nanoti VM (2018) Ameliorative effect of nanoencapsulated flavonoid against chlorpyrifos-induced hepatic oxidative damage and immunotoxicity in Wistar rats. J Biochem Mol Toxicol 32(5):e22050

    Article  PubMed  CAS  Google Scholar 

  141. Baowen Q, Yulin Z, Xin W, Wenjing X, Hao Z, Zhizhi C, Xingmei D, Xia Z, Yuquan W, Lijuan C (2010) A further investigation concerning correlation between anti-fibrotic effect of liposomal quercetin and inflammatory cytokines in pulmonary fibrosis. Eur J Pharmacol 642(1–3):134–139

    Article  PubMed  CAS  Google Scholar 

  142. Fahlman BM, Krol ES (2009) Inhibition of UVA and UVB radiation-induced lipid oxidation by quercetin. J Agric Food Chem 57(12):5301–5305

    Article  CAS  PubMed  Google Scholar 

  143. Naumov AA, Shatalin YV, Sukhomlin TK, Potselueva MM (2009) Effect of liposomes containing antioxidant, phospholipid, and amino acid on skin regeneration after chemical burn. Bull Exp Biol Med 147(4):531–536

    Article  CAS  PubMed  Google Scholar 

  144. Naumov AA, Potselueva MM (2010) Liposomal form of dihydroquercetin contributes to skin regeneration after thermal burns. Cell Tissue Biol 4(3):240–244

    Article  Google Scholar 

  145. Tan Q, Liu W, Guo C, Zhai G (2011) Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomedicine 6:1621–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Castangia I, Nacher A, Caddeo C, Valenti D, Fadda AM, Diez-Sales O, Ruiz-Sauri A, Manconi M (2014) Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomater 10(3):1292–1300

    Article  CAS  PubMed  Google Scholar 

  147. Jangde R, Singh D (2016) Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artificial Cells Nanomed Biotechnol 44(2):635–641

    Article  CAS  Google Scholar 

  148. Hatahet T, Morille M, Shamseddin A, Aubert-Pouessel A, Devoisselle JM, Begu S (2017) Dermal quercetin lipid nanocapsules: Influence of the formulation on antioxidant activity and cellular protection against hydrogen peroxide. Int J Pharm 518(1–2):167–176

    Article  CAS  PubMed  Google Scholar 

  149. Jangde R, Srivastava S, Singh MR, Singh D (2018) In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. Int J Biol Macromol 115:1211–1217

    Article  CAS  PubMed  Google Scholar 

  150. Hatahet T, Morille M, Hommoss A, Devoisselle JM, Muller RH, Begu S (2018) Liposomes, lipid nanocapsules and smartCrystals(R): A comparative study for an effective quercetin delivery to the skin. Int J Pharm 542(1–2):176–185

    Article  CAS  PubMed  Google Scholar 

  151. Seong JS, Yun ME, Park SN (2018) Surfactant-stable and pH-sensitive liposomes coated with N-succinyl-chitosan and chitooligosaccharide for delivery of quercetin. Carbohydr Polym 181:659–667

    Article  CAS  PubMed  Google Scholar 

  152. Raghuwanshi N, Yadav TC, Srivastava AK, Raj U, Varadwaj P, Pruthi V (2019) Structure-based drug designing and identification of Woodfordia fruticosa inhibitors targeted against heat shock protein (HSP70–1) as suppressor for Imiquimod-induced psoriasis like skin inflammation in mice model. Mater Sci Eng C Mater Biol Appl 95:57–71

    Article  CAS  PubMed  Google Scholar 

  153. Yuan ZP, Chen LJ, Fan LY, Tang MH, Yang GL, Yang HS, Du XB, Wang GQ, Yao WX, Zhao QM, Ye B, Wang R, Diao P, Zhang W, Wu HB, Zhao X, Wei YQ (2006a) Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res 12(10):3193–3199

    Article  CAS  PubMed  Google Scholar 

  154. Yuan ZP, Chen LJ, Wei YQ, Fan LY, Tang MH, Yang GL (2006b) Nanoliposomal quercetin inhibits formation of malignant ascites of hepatocellular carcinoma. Chin J Cancer 25(8):941–945

    CAS  Google Scholar 

  155. Verma NK, Crosbie-Staunton K, Satti A, Gallagher S, Ryan KB, Doody T, McAtamney C, MacLoughlin R, Galvin P, Burke CS, Volkov Y, Gun’ko YK (2013) Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol 11:1

    Google Scholar 

  156. Zhou X, Liu HY, Zhao H, Wang T (2018) RGD-modified nanoliposomes containing quercetin for lung cancer targeted treatment. OncoTargets Ther 11:5397–5405

    Google Scholar 

  157. Arbain NH, Salim N, Wui WT, Basri M, Rahman MBA (2018) Optimization of quercetin loaded palm oil ester based nanoemulsion formulation for pulmonary delivery. J Oleo Sci 67(8):933–940

    Article  CAS  PubMed  Google Scholar 

  158. Riaz MK, Zhang X, Wong KH, Chen H, Liu Q, Chen X, Zhang G, Lu A, Yang Z (2019) Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int J Nanomedicine 14:2879–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Arbain NH, Salim N, Masoumi HRF, Wong TW, Basri M, Abdul Rahman MB (2019) In vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery. Drug Deliv Transl Res 9(2):497–507

    Article  CAS  PubMed  Google Scholar 

  160. Wong MY, Chiu GN (2011) Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine 7(6):834–840

    Article  CAS  PubMed  Google Scholar 

  161. Kumar SR, Priyatharshni S, Babu VN, Mangalaraj D, Viswanathan C, Kannan S, Ponpandian N (2014) Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci 436:234–242

    Article  PubMed  CAS  Google Scholar 

  162. Zafar S, Negi LM, Verma AK, Kumar V, Tyagi A, Singh P, Iqbal Z, Talegaonkar S (2014) Sterically stabilized polymeric nanoparticles with a combinatorial approach for multi drug resistant cancer: in vitro and in vivo investigations. Int J Pharm 477(1–2):454–468

    Article  CAS  PubMed  Google Scholar 

  163. Sharma G, Park J, Sharma AR, Jung JS, Kim H, Chakraborty C, Song DK, Lee SS, Nam JS (2015) Methoxy poly(ethylene glycol)-poly(lactide) nanoparticles encapsulating quercetin act as an effective anticancer agent by inducing apoptosis in breast cancer. Pharm Res 32(2):723–735

    Article  CAS  PubMed  Google Scholar 

  164. Pandey SK, Patel DK, Thakur R, Mishra DP, Maiti P, Haldar C (2015) Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation. Int J Biol Macromol 75:521–529

    Article  CAS  PubMed  Google Scholar 

  165. Lv L, Liu C, Chen C, Yu X, Chen G, Shi Y, Qin F, Ou J, Qiu K, Li G (2016) Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget 7(22):32184–32199

    Article  PubMed  PubMed Central  Google Scholar 

  166. Suksiriworapong J, Phoca K, Ngamsom S, Sripha K, Moongkarndi P, Junyaprasert VB (2016) Comparison of poly(epsilon-caprolactone) chain lengths of poly(epsilon-caprolactone)-co-d-alpha-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells. Eur J Pharm Biopharm 101:15–24

    Article  CAS  PubMed  Google Scholar 

  167. Minaei A, Sabzichi M, Ramezani F, Hamishehkar H, Samadi N (2016) Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol Biol Rep 43(2):99–105

    Article  CAS  PubMed  Google Scholar 

  168. Tavano L, Mauro L, Naimo GD, Bruno L, Picci N, Ando S, Muzzalupo R (2016) Further evolution of multifunctional niosomes based on pluronic surfactant: dual active targeting and drug combination properties. Langmuir 32(35):8926–8933

    Article  CAS  PubMed  Google Scholar 

  169. Zuo J, Jiang Y, Zhang E, Chen Y, Liang Z, Zhu J, Zhao Y, Xu H, Liu G, Liu J, Wang W, Zhang S, Zhen Y (2019) Synergistic effects of 7-O-geranylquercetin and siRNAs on the treatment of human breast cancer. Life Sci 227:145–152

    Article  CAS  PubMed  Google Scholar 

  170. Hemati M, Haghiralsadat F, Yazdian F, Jafari F, Moradi A, Malekpour-Dehkordi Z (2019) Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artificial Cells Nanomed Biotechnol 47(1):1295–1311

    Article  CAS  Google Scholar 

  171. Xu G, Shi H, Ren L, Gou H, Gong D, Gao X, Huang N (2015) Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int J Nanomedicine 10:2051–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Martirosyan A, Grintzalis K, Polet M, Laloux L, Schneider YJ (2016) Tuning the inflammatory response to silver nanoparticles via quercetin in Caco-2 (co-)cultures as model of the human intestinal mucosa. Toxicol Lett 253:36–45

    Article  CAS  PubMed  Google Scholar 

  173. Ren KW, Li YH, Wu G, Ren JZ, Lu HB, Li ZM, Han XW (2017) Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int J Oncol 50(4):1299–1311

    Article  CAS  PubMed  Google Scholar 

  174. Ghosh A, Mandal AK, Sarkar S, Panda S, Das N (2009) Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci 84(3–4):75–80

    Article  CAS  PubMed  Google Scholar 

  175. Hu J, Wang J, Wang G, Yao Z, Dang X (2016) Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int J Mol Med 37(3):690–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mandal AK, Das S, Mitra M, Chakrabarti RN, Chatterjee M, Das N (2008) Vesicular flavonoid in combating diethylnitrosamine induced hepatocarcinoma in rat model. J Exp Ther Oncol 7(2):123–133

    CAS  PubMed  Google Scholar 

  177. Dabbagh-Bazarbachi H, Clergeaud G, Quesada IM, Ortiz M, O’Sullivan CK, Fernandez-Larrea JB (2014) Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model. J Agric Food Chem 62(32):8085–8093

    Google Scholar 

  178. Mandal AK, Ghosh D, Sarkar S, Ghosh A, Swarnakar S, Das N (2014) Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine-induced carcinoma. Nanomedicine 9(15):2323–2337

    Article  CAS  PubMed  Google Scholar 

  179. Varshosaz J, Jafarian A, Salehi G, Zolfaghari B (2014) Comparing different sterol containing solid lipid nanoparticles for targeted delivery of quercetin in hepatocellular carcinoma. J Liposome Res 24(3):191–203

    Article  CAS  PubMed  Google Scholar 

  180. Bishayee K, Khuda-Bukhsh AR, Huh SO (2015) PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol Cells 38(6):518–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Guan X, Gao M, Xu H, Zhang C, Liu H, Lv L, Deng S, Gao D, Tian Y (2016) Quercetin-loaded poly (lactic-co-glycolic acid)-d-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles for the targeted treatment of liver cancer. Drug Deliv 23(9):3307–3318

    Article  CAS  PubMed  Google Scholar 

  182. Hu F, Bu YZ, Liang R, Duan RM, Wang S, Han RM, Wang P, Ai XC, Zhang JP, Skibsted LH (2013) Quercetin and daidzein beta-apo-14′-carotenoic acid esters as membrane antioxidants. Free Radic Res 47(5):413–421

    Article  CAS  PubMed  Google Scholar 

  183. Sahu S, Saraf S, Kaur CD, Saraf S (2013) Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak J Biol Sci 16(13):601–609

    Article  CAS  PubMed  Google Scholar 

  184. Zhu X, Zeng X, Zhang X, Cao W, Wang Y, Chen H, Wang T, Tsai HI, Zhang R, Chang D, He S, Mei L, Shi X (2016) The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine 12(3):623–632

    Article  CAS  PubMed  Google Scholar 

  185. Sandhu PS, Kumar R, Katare OP, Singh B (2017) Surface-tailored nanomixed micelles containing quercetin-salicylic acid physical complex for enhanced cellular and in vivo activities: a quality by design perspective. Nanomedicine 12(11):1281–1303

    Article  CAS  PubMed  Google Scholar 

  186. George D, Maheswari PU, Begum K (2019) Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int J Biol Macromol 132:784–794

    Article  CAS  PubMed  Google Scholar 

  187. Barzilai A, Rahamimoff H (1983) Inhibition of Ca2+−transport ATPase from synaptosomal vesicles by flavonoids. Biochim Biophys Acta Biomembr 730(2):245–254

    Article  CAS  Google Scholar 

  188. Fawzy AA, Vishwanath BS, Franson RC (1988) Inhibition of human non-pancreatic phospholipases A2 by retinoids and flavonoids. Mechanism of action. Agents Actions 25(3–4):394–400

    Article  CAS  PubMed  Google Scholar 

  189. Theoharidesi TC, Asadp S, Panagiotidoui S (2012) A case series ofa luteolin formulation (Neuroprotek®) in children with autism spectrum disorders. Int J Immunopathol Pharmacol 25(2):317–323

    Article  Google Scholar 

  190. Rich GT, Buchweitz M, Winterbone MS, Kroon PA, Wilde PJ (2017) Towards an understanding of the low bioavailability of quercetin: a study of its interaction with intestinal lipids. Nutrients 9(2). https://doi.org/10.3390/nu9020111

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S.S., Verma, P.R.P., Singh, S.K. (2020). Quercetin-Loaded Nanomedicine as Nutritional Application. In: Rahman, M., Beg, S., Kumar, V., Ahmad, F. (eds) Nanomedicine for Bioactives . Springer, Singapore. https://doi.org/10.1007/978-981-15-1664-1_9

Download citation

Publish with us

Policies and ethics