Microstructure and Hardness Behaviour Study of Carbon Nanotube in Aluminium Nanocomposites

  • Prashant S. Hatti
  • K. Narasimha Murthy
  • Anupama B. SomanakattiEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 169)


In this study, the effect of carbon nanotube (CNT) amount in aluminium (Al)–CNT composites produced by adding CNT to Al alloy in various amounts on microstructure and hardness of CNT-reinforced aluminium metal matrix composites was investigated. CNT was added to Al matrix in different weight percentages. Two different ball materials, namely tungsten ball and aluminium oxide ball, were used for same composition of Al–CNT composites. The milled powders were compacted inside the compaction die and then sintered using microwave sintering process. The microstructural analysis of CNT-reinforced aluminium nanocomposite ball-milled powder is sintered and scanned using SEM. The Brinell hardness test is conducted for Al–CNT nanocomposite samples for both 60 and 100 Kgf loads, and it can be observed that the highest enhancement in hardness value has occurred in CNT 1.3 wt% reinforced into aluminium composites for both 60 and 100 Kgf load. Hence, it can be understood that the alumina ball-milled samples have slightly higher improvement in hardness than compared to tungsten ball-milled samples.


MMCs Aluminium CNT Microwave sintering Microstructure 


  1. 1.
    Harris, P.J.F.: Carbon nanotube composites. Int. Mater. Rev. 49(1), 31–43 (2004)CrossRefGoogle Scholar
  2. 2.
    Curtin, W.A., Sheldon, B.W.: CNT-reinforced ceramics and metals. Mater. Today 7(11), 44–49 (2004)CrossRefGoogle Scholar
  3. 3.
    Handbook of Polymer Nanocomposites Processing Performance and Application (2015)Google Scholar
  4. 4.
    Carreno-Morelli, E.: Carbon Nanotube–Metal Matrix Composites, The Dekker Encyclopedia of Nanoscience and Nanotechnology, pp. 1–9. Taylor and Francis, New York (2006)Google Scholar
  5. 5.
    Esawi, A.M.K.: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 20101231 (2010)Google Scholar
  6. 6.
    Xu, C.L., Wei, B.Q., Ma, R.Z., Liang, J., Ma, X.K., Wu, D.H.: Fabrication of aluminium–carbon nanotube composites and their electrical properties. Carbon 37, 855–858 (1999)CrossRefGoogle Scholar
  7. 7.
    Zhong, R., Cong, H., Hou, P.: Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes. Carbon 41, CO1-851 (letters to the editor) (2003)Google Scholar
  8. 8.
    Kuzumaki, T., Miyazawa, K., Ichinose, H., Ito, K.J.: Processing of carbon nanotubes aluminium composite. Mater Res 13, 2445–2449 (1998)CrossRefGoogle Scholar
  9. 9.
    Perez-Bustamante, R., Estrada-Guel, I., Antunez-Flores, W., Miki-Yoshida, M., Ferreira, P.J., Martinez-Sanchez, R.: Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. J Alloy. Compd. 450(1–2), 323–6 (2008)Google Scholar
  10. 10.
    Esawi, A.M.K., El Borady, M.A.: Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68(2), 486–492 (2008)CrossRefGoogle Scholar
  11. 11.
    Deng, C.F., Wang, D.Z., Zhang, X.X., Li, A.B.: Processing and properties of carbon nanotubes reinforced aluminium composites. Mater. Sci. Eng. A 444(1–2), 138–45 (2007)Google Scholar
  12. 12.
    George, R., Kashyap, K.T., Rahul, R., Yamdagni, S.: Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53, 1159–1163 (2005)CrossRefGoogle Scholar
  13. 13.
    Esawi, A.M.K., Morsi, K.: Dispersion of carbon nanotubes (CNT) in aluminium powder. Compos. Part A 38(2), 646–650 (2007)CrossRefGoogle Scholar
  14. 14.
    Morsi, K., Esawi, A.: Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminium (Al)–CNT composite powders. J. Mater. Sci. 42, 4954–4959 (2007)CrossRefGoogle Scholar
  15. 15.
    Esawi, A.M.K., Morsi, K., Sayed, A., Abdel Gawad, A., Borah, P.: Fabrication and properties of dispersed carbon nanotube–aluminium composites. Mater. Sci. Eng. A (2009). Scholar
  16. 16.
    Choi, H.J., Kwon, G.B., Lee, G.Y., Bae, D.H.: Reinforcement with carbon nanotubes in aluminium matrix composites. Scr. Mater. 59, 360–363 (2008)CrossRefGoogle Scholar
  17. 17.
    Morsi, K., Esawi, A.M.K., Borah, P., Lanka, S., El-Sayed, A.: Characterization and spark plasma sintering of mechanically milled aluminium–carbon nanotube (CNT) composite powders. J. Compos. Mater. (2010). Scholar
  18. 18.
    Kwon, H., Estili, M., Takagi, K., Miyazaki, T., Kawasaki, A.: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube aluminium matrix composites. Carbon (2008). doi:10.1016/j.carbon.2008.10.041Google Scholar
  19. 19.
    Laha, T., Agarwal, A., McKechnie, T., Seal, S.: Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminium composite. Mater. Sci. Eng. A 381, 249–258 (2004)CrossRefGoogle Scholar
  20. 20.
    Bakshi, S.R., Singh, V., Balani, K., McCartney, D.G., Seal, S., Agarwal, A.: Carbon nanotube reinforced aluminium composite coating via cold spraying. Surf. Coat. Technol. 202, 5162–5169 (2008)CrossRefGoogle Scholar
  21. 21.
    Tokunaga, T., Kaneko, K., Horita, Z.: Production of aluminium-matrix carbon nanotube composite using high pressure torsion. Mater. Sci. Eng. A 490, 300–304 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Prashant S. Hatti
    • 1
  • K. Narasimha Murthy
    • 2
  • Anupama B. Somanakatti
    • 3
    Email author
  1. 1.Department of Mechanical EngineeringCMR Institute of TechnologyBengaluruIndia
  2. 2.Department of Mechanical EngineeringAtria Institute of TechnologyBengaluruIndia
  3. 3.Department of Mechanical EngineeringA.P.S. College of EngineeringBengaluruIndia

Personalised recommendations