Automatic Calibration for Residential Water Meters by Using Artificial Vision

  • Edwin PrunaEmail author
  • Carlos Bustamante
  • Miguel Escudero
  • Santiago Mullo
  • Ivón Escobar
  • José Bucheli
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 169)


The present work addresses the problem of automated calibration system for residential water meters, by using artificial vision. The project consists of a closed water flow circuit powered by a low-power pump; the data from water meter is taken by the computer using a USB camera; a calculation is made based on the time it takes to fully rotate the smaller-scale needle of the meter to determine the water flow in real time. At the same time, the actual flow data of the reference standard element, which is a rotameter, is obtained by a second camera. These values are compared to calculate an error that determines the adjustment action on the water meter.


Automatic calibration Artificial vision Water meter LabVIEW 


  1. 1.
    Cubero, S., Aleixos, N., Molto, E., Gomez-Sanchis, J., Blasco, J.: Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioproc. Techol. 4(4), 487–504 (2011)CrossRefGoogle Scholar
  2. 2.
    Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robot. 33(1–2), 21–39 (2012)CrossRefGoogle Scholar
  3. 3.
    Fernandes, R.A.B., Diniz, B., Ribeiro, R., Humayun, M.: Artificial vision through neuronal stimulation. Neurosci. Lett. 519, 122–128 (2012)CrossRefGoogle Scholar
  4. 4.
    Jiale, H., En, L., Bingjie, T., Ming, L.: Reading recognition method of analog measuring instruments based on improved hough transform. In: IEEE 2011 10th International Conference on Electronic Measurement & Instruments, Chengdu, 337–340 2011Google Scholar
  5. 5.
    Han, J., Shao, L., Xu, D., Shotton, J.: Enhanced computer vision with microsoft Kinect sensor: a review. In: IEEE Transactions on Cybernetics, vol. 43, no. 5, 1318–1334 Oct 2013Google Scholar
  6. 6.
    Luhmann, T., Robson, K., Kyle, S., Boehm J.: Close-range photogrammetry and 3D imgaging. Walter de Gruyter Gmbll Berlin (2014)Google Scholar
  7. 7.
    Cominola, A., Giuliani, M., Piga, D., Castelletti, A., Rizzoli, A.E.: Benefits and challenges of using smart meters for advancing residential water demand modeling and management: a review. Environ. Model. Softw. 72, 198–214, (2015) ISSN 1364-8152Google Scholar
  8. 8.
    Sonderlund, A.L., Smith, J.R., Hutton, C., Kapelan, Z.: Using smart meters for household water consumption feedback: knowns and unknowns. Procedia Eng. 89, 990–997 (2014)CrossRefGoogle Scholar
  9. 9.
    Larson, E., Froehlich, J., Campbell, T., Haggerty, C., Atlas, L., Fogarty, J., Patel, S.N.: Disaggregated water sensing from a single, pressure-based sensor: an extended analysis of HydroSense using staged experiments. Pervasive Mob. Comput. 8(1), 82–102 (2012)CrossRefGoogle Scholar
  10. 10.
    Lim, T.Y., Ratnam, M.M.: Edge detection and measurement of nose radii of cutting tool inserts from scanned 2-D images. Opt. Lasers Eng. 50(11), 1628–1642 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Edwin Pruna
    • 1
    Email author
  • Carlos Bustamante
    • 1
  • Miguel Escudero
    • 1
  • Santiago Mullo
    • 1
  • Ivón Escobar
    • 1
  • José Bucheli
    • 1
  1. 1.Universidad de Las Fuerzas Armadas ESPESangolquiEcuador

Personalised recommendations